2 resultados para Net ecosystem exchange
em DigitalCommons - The University of Maine Research
Resumo:
Measurements in San Bernardino Strait, one of two major connections between the Pacific Ocean and the interior waters of the Philippine Archipelago, captured 2-3 m s(-1) tidal currents that drove vertical mixing and net landward transport. A TRIAXUS towed profiling vehicle equipped with physical and optical sensors was used to repeatedly map subregions within the strait, employing survey patterns designed to resolve tidal variability of physical and optical properties. Strong flow over the sill between Luzon and Capul islands resulted in upward transport and mixing of deeper high-salinity, low-oxygen, high-particle-and-nutrient-concentration water into the upper water column, landward of the sill. During the high-velocity ebb flow, topography influences the vertical distribution of water, but without the diapycnal mixing observed during flood tide. The surveys captured a net landward flux of water through the narrowest part of the strait. The tidally varying velocities contribute to strong vertical transport and diapycnal mixing of the deeper water into the upper layer, contributing to the observed higher phytoplankton biomass within the interior of the strait.
Resumo:
The causes of the glacial cycle remain unknown, although the primary driver is changes in atmospheric CO(2), likely controlled by the biological pump and biogeochemical cycles. The two most important regions of the ocean for exchange of CO(2) with the atmosphere are the equatorial Pacific and the Southern Ocean ( SO), the former a net source and the latter a net sink under present conditions. The equatorial Pacific has been shown to be a Si(OH)(4)-limited ecosystem, a consequence of the low source Si(OH)(4) concentrations in upwelled water that has its origin in the SO. This teleconnection for nutrients between the two regions suggests an oscillatory relationship that may influence or control glacial cycles. Opal mass accumulation rate (MAR) data and delta(15)N measurements in equatorial cores are interpreted with predictions from a one- dimensional Si(OH)(4)-limited ecosystem model (CoSINE) for the equatorial Pacific. The results suggest that equatorial Pacific surface CO(2) processes are in opposite phase to that of the global atmosphere, providing a negative feedback to the glacial cycle. This negative feedback is implemented through the effect of the SO on the equatorial Si(OH)(4) supply. An alternative hypothesis, that the whole ocean becomes Si(OH)(4) poor during cooling periods, is suggested by low opal MAR in cores from both equatorial and Antarctic regions, perhaps as a result of low river input. terminations in this scenario would result from blooms of coccolithophorids triggered by low Si(OH)(4) concentrations.