3 resultados para Nb

em DigitalCommons - The University of Maine Research


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Holtite, approximately (Al,Ta,square)Al(6)(BO(3))(Si,Sb(3+),As(3+))(Sigma 3)O(12)(O,OH,square)(Sigma 3), is a member of the dumortierite group that has been found in pegmatite, or alluvial deposits derived from pegmatite, at three localities: Greenbushes, Western Australia; Voron'i Tundry, Kola Peninsula, Russia; and Szklary, Lower Silesia, Poland. Holtite can contain >30 wt.% Sb(2)O(3), As(2)O(3), Ta(2)O(5), Nb(2)O(5), and TiO(2) (taken together), but none of these constituents is dominant at a crystallographic site, which raises the question whether this mineral is distinct from dumortierite. The crystal structures of four samples from the three localities have been refined to R(1) = 0.02-0.05. The results show dominantly: Al, Ta, and vacancies at the Al(1) position; Al and vacancies at the Al(2), (3) and (4) sites; Si and vacancies at the Si positions; and Sb, As and vacancies at the Sb sites for both Sb-poor (holtite I) and Sb-rich (holtite II) specimens. Although charge-balance calculations based on our single-crystal structure refinements suggest that essentially no water is present, Fourier transform infrared spectra confirm that some OH is present in the three samples that could be measured. By analogy with dumortierite, the largest peak at 3505-3490 cm(-1) is identified with OH at the O(2) and O(7) positions. The single-crystal X-ray refinements and FTIR results suggest the following general formula for holtite: Al(7-[5x+y+z]/3)(Ta,Nb)(x)square([2x+y+z]/3)BSi(3-y)(Sb,As)(y)O(18-y-z)(OH)(z), where x is the total number of pentavalent cations, y is the total amount of Sb + As, and z <= y is the total amount of OH. Comparison with the electron microprobe compositions suggests the following approximate general formulae Al(5.83)(Ta,Nb)(0.50)square(0.67)BSi(2.50)(Sb,As)(0.50)O(17.00)(OH)(0.50) and Al(5.92)(Ta,Nb)(0.25)square(0.83)BSi(2.00)(Sb,As)(1.00) O(16.00)(OH)(1.00) for holtite I and holtite II respectively. However, the crystal structure refinements do not indicate a fundamental difference in cation ordering that might serve as a criterion for recognizing the two holtites as distinct species, and anion compositions are also not sufficiently different. Moreover, available analyses suggest the possibility of a continuum in the Si/(Sb + As) ratio between holtite I and dumortierite, and at least a partial continuum between holtite I and holtite II. We recommend that use of the terms holtite I and holtite II be discontinued.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Szklary holtite is represented by three compositional varieties: (I) Ta-bearing (up to 14.66 wt.% Ta(2)O(5)), which forms homogeneous crystals and cores within zoned crystals; (2) Ti-bearing (up to 3.82 wt.% TiO(2)), found as small domains within the core; and (3) Nb-bearing (up to 5.30 wt.% Nb(2)O(5),) forming the rims of zoned crystals. All three varieties show variable Sb+As content, reaching 19.18 wt.% Sb(2)O(3) (0.87 Sb a.p.f.u.) and 3.30 wt.% As(2)O(3) (0.22 As a.p.f.u.) in zoned Ta-bearing holtite, which constitutes the largest Sb+As content reported for the mineral. The zoning in holtite is a result of Ta-Nb fractionation in the parental pegmatite-forming melt together with contamination of the relatively thin Szklary dyke by Fe, Mg and Ti. Holtite and the As- and Sb-bearing dumortierite, which in places overgrows the youngest Nb-bearing zone, suggest the following crystallization sequence: Ta-bearing holtite -> Ti-bearing holtite -> Nb-bearing holtite -> As- and Sb-bearing, (Ta,Nb,Ti)-poor dumortierite -> As- and Sb-dominant, (Ta,Nb,Ti)-free dumortierite-like mineral (16.81 wt.% As(2)O(3) and 10.23 wt.% Sb(2)O(3)) with (As+Sb) > Si. The last phase is potentially a new mineral species, Al(6)rectangle B(Sb,As)(3)O(15). or Al(5)rectangle(2)B(Sb,As)(3)O(12)(OH)(3), belonging to the dumortierite group. The Szklary holtite shows no evidence of clustering of compositions around 'holtite I' and 'holtite II'. Instead, the substitutions of Si(4+) by Sb(3+)+As(3+) at the Si/Sb sites and of Ta(5+) by Nb(5+) or Ti(4+) at the Al(l) site suggest possible solid solutions between: (1) (Sb,As)-poor and (Sb,As)-rich holtite; (2) dumortierite and the unnamed (As+Sb)-dominant dumortierite-like mineral; and (3) Ti-bearing dumortierite and holtite, i.e. our data provide further evidence for miscibility between holtite and dumortierite, but leave open the question of defining the distinction between them. The Szklary holtite crystallized from the melt along with other primary Ta-Nb-(Ti) minerals such as columbite-(Mn), tantalite-(Mn), stibiotantalite and stibiocolumbite as the availability of Ta decreased. The origin of the parental melt can be related to anatexis in the adjacent Sowie Mountains complex, leading to widespread migmatization and metamorphic segregation in pelitic-psammitic sediments metamorphosed at similar to 390-380 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A swarm of minette and melanephelinite dikes is exposed over 2500 km2 in and near the Wasatch Plateau, central Utah, along the western margin of the Colorado Plateaus in the transition zone with the Basin and Range province. To date, 110 vertical dikes in 25 dike sets have been recognized. Strikes shift from about N80-degrees-W for 24 Ma dikes, to about N60-degrees-W for 18 Ma, to due north for 8-7 m.y. These orientations are consistent with a shift from east-west Oligocene compression associated with subduction to east-west late Miocene crustal extension. Minettes are the most common rock type; mica-rich minette and mica-bearing melanephelinite occurs in 24 Ma dikes, whereas more ordinary minette is found in 8-7 Ma dikes. One melanephelinite dike is 18 Ma. These mafic alkaline rocks are transitional to one another in modal and major element composition but have distinctive trace element patterns and isotopic compositions; they appear to have crystallized from primitive magmas. Major, trace element, and Nd-Sr isotopic data indicate that melanephelinite, which has similarities to ocean island basalt, was derived from small degree melts of mantle with a chondritic Sm/Nd ratio probably located in the asthenosphere, but it is difficult to rule out a lithospheric source. In contrast, mica-bearing rocks (mica melanephelinite and both types of minette) are more potassic and have trace element patterns with strong Nb-Ta depletions and Sr-Nd isotopic compositions caused by involvement with a component from heterogeneously enriched lithospheric mantle with long-term enrichment of Rb or light rare earth elements (REE) (epsilon Nd as low as - 15 in minette). Light REE enrichment must have occurred anciently in the mid-Proterozoic when the lithosphere was formed and is not a result of Cenozoic subduction processes. After about 25 Ma, foundering of the subducting Farallon plate may have triggered upwelling of warm asthenospheric mantle to the base of the lithosphere. Melanephelinite magma may have separated from the asthenosphere and, while rising through the lithosphere, provided heat for lithospheric magma generation. Varying degrees of interaction between melanephelinite and small potassic melt fractions derived from the lithospheric mantle can explain the gradational character of the melanephelinite to minette suite.