2 resultados para Minimal Condition

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equatorial Pacific Ocean is the largest natural source of CO(2) to the atmosphere, and it significantly impacts the global carbon cycle. Much of the large flux of upwelled CO(2) to the atmosphere is due to incomplete use of the available nitrate (NO(3)) and low net productivity. This high-nutrient low-chlorophyll (HNLC) condition of the equatorial upwelling zone (EUZ) has been interpreted from modeling efforts to be due to low levels of silicate ( Si( OH) 4) that limit the new production of diatoms. These ideas were incorporated into an ecosystem model, CoSINE. This model predicted production by the larger phytoplankton and the picoplankton and effects on air-sea CO(2) fluxes in the Pacific Ocean. However, there were no size-fractionated rates available for verification. Here we report the first size-fractionated new and regenerated production rates (obtained with (15)N - NO(3) and (15)N - NH(4) incubations) for the EUZ with the objective of validating the conceptual basis and functioning of the CoSINE model. Specifically, the larger phytoplankton ( with cell diameters > 5 mu m) had greater rates of new production and higher f-ratios (i.e., the proportion of NO(3) to the sum of NO(3) and NH(4) uptake) than the picoplankton that had high rates of NH(4) uptake and low f-ratios. The way that the larger primary producers are regulated in the EUZ is discussed using a continuous chemostat approach. This combines control of Si(OH)(4) production by supply rate (bottom-up) and control of growth rate ( or dilution) by grazing ( top-down control).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study provided further information about stuttering among bilingual populations and attempted to assess the significance of repeated oral-motor movements during an adaptation task in two bilingual adults. This was accomplished by requesting that bilingual people who stutter to complete an adaptation task of the same written passage in two different languages. Explored was the following research question: In bilingual speakers who stutter, what is the effect of altering the oral-motor movements by changing the language of the passage read during an adaptation task? Two bilingual adults were each requested to complete an adaptation task consisting of 10 readings in two separate conditions. Participants 1 and 2 completed two conditions, each of which contained a separate passage. Condition B consisted of an adaptation procedure in which the participants read five successive readings in English followed by five additional successive readings in Language 1 (L1). Following the completion of the first randomly assigned condition, the participant was given a rest period of 30 minutes before beginning the remaining condition and passage. Condition A consisted of an adaptation procedure in which the participants read five successive readings in L1 followed by five additional successive readings in English. Results across participants, conditions, and languages indicated an atypical adaptation curve over 10 readings characterized by a dramatic increase in stuttering following a change of language. Closer examination of individual participants revealed differences in stuttering and adaptation among languages and conditions. Participants 1 and 2 demonstrated differences in adaptation and stuttering among languages. Participant 1 demonstrated an increase in stuttering following a change in language read in Condition B and a decrease in stuttering following a change in language read in Condition A. It is speculated that language proficiency contributed to the observed differences in stuttering following a change of language. Participant 2 demonstrated an increase in stuttering following a change in language read in Condition A and a minimal increase in stuttering following a change in language read in Condition B. It is speculated that a change in the oral-motor plan contributed to the increase in stuttering in Condition A. Collectively, findings from this exploratory study lend support to an interactive effect between language proficiency and a change in the oral-motor plan contributing to increased stuttering following a change of language during an adaptation task.