2 resultados para Method development and research
em DigitalCommons - The University of Maine Research
Resumo:
This study adapted the current model of science undergraduate research experiences (URE's) and applied this novel modification to include community college students. Numerous researchers have examined the efficacy of URE's in improving undergraduate retention and graduation rates, as well as matriculation rates for graduate programs. However, none have detailed the experience for community college students, and few have employed qualitative methodologies to gather relevant descriptive data from URE participants. This study included perspectives elicited from both non-traditional student participants and the established laboratory community. The purpose of this study was to determine the effectiveness of the traditional model for a non-traditional student population. The research effort described here utilized a qualitative design and an explanatory case study methodology. Six non-traditional students from the Maine Community College System participated in this study. Student participants were placed in six academic research laboratories located throughout the state. Student participants were interviewed three times during their ten-week internship and asked to record their personal reflections in electronic format. Participants from the established research community were also interviewed. These included both faculty mentors and other student laboratory personnel. Ongoing comparative analysis of the textual data revealed that laboratory organizational structure and social climate significantly influence acculturation outcomes for non-traditional URE participants. Student participants experienced a range of acculturation outcomes from full integration to marginalization. URE acculturation outcomes influenced development of non-traditional students? professional and academic self-concepts. Positive changes in students? self-concepts resulted in greater commitment to individual professional goals and academic aspirations. The findings from this study suggest that traditional science URE models can be successfully adapted to meet the unique needs of a non-traditional student population – community college students. These interpretations may encourage post-secondary educators, administrators, and policy makers to consider expanded access and support for non-traditional students seeking science URE opportunities.
Resumo:
Metasequoia glyptostroboides is a useful nearest living relative (NLR) of the Eocene fossil Metasequoia. Research on modern Metasequoia might give us some clues about its fossil counterpart. During this study the leaf anatomy of Metasequoia, Glyptostrobus, Sequoia and Taxodium was investigated with light microscopy and transmission electron microscopy. Metasequoia exhibits several characteristics of typical sciaphilic plants, such as slightly arched outer cell walls in the adaxial epidermal cells, strongly arched outer cell walls in the abaxial epidermal cells, mesophyll composed of spongy cells, chloroplasts with well-developed grana not only in mesophyll cells but in both the adaxial and abaxial epidermis. Based on comparison of leaf morphology and anatomy, we conclude that Metasequoia is best adapted to low light intensities, Sequoia and Taxodium are intermediate, and Glyptostrobus is adapted to higher light intensities. The effects of light intensity on mesophyll plastids of Metasequoia leaves were studied with trees grown under different light intensities. Metasequoia had the ability to synthesize chlorophyll under complete darkness and was stressed under high light. These characteristics would provide adaptive advantages for Metasequoia to adapt to low intensity, low angle, polar light at their Eocene high latitude paleoenvironments, particularly during the polar spring when light levels are exceedingly low. It provides evidence to explain why Metasequoia was the dominant tree species in Eocene high latitudes. The thesis is written as an article to be submitted to the American Journal of Botany.