2 resultados para Metabolic flux analysis
em DigitalCommons - The University of Maine Research
Resumo:
We have determined the flux of calcium, chloride and nitrate to the McMurdo Dry Valleys region by analysing snow pits for their chemical composition and their snow accumulation using multiple records spanning up to 48 years. The fluxes demonstrate patterns related to elevation and proximity to the ocean. In general, there is a strong relationship between the nitrate flux and snow accumulation, indicating that precipitation rates may have a great influence over the nitrogen concentrations in the soils of the valleys. Aeolian dust transport plays an important role in the deposition of some elements (e.g. C(2+)) into the McMurdo Dry Valleys' soils. Because of the antiquity of some of the soil surfaces in the McMurdo Dry Valleys regions, the accumulated atmospheric flux of salts to the soils has important ecological consequences. Although precipitation may be an important mechanism of salt deposition to the McMurdo Dry Valley surfaces, it is poorly understood because of difficulties in measurement and high losses from sublimation.
Resumo:
Explosive volcanic eruptions can inject large quantities of sulphur dioxide into the stratosphere. The aerosols that result from oxidation of the sulphur dioxide can produce significant cooling of the troposphere by reflecting or absorbing solar radiation. It is possible to obtain an estimate of the relative stratospheric sulphur aerosol concentration produced by different volcanoes by comparing sulphuric acid fluxes determined by analysis of polar ice cores. Here, we use a non-sea-salt sulphate time series derived from three well-dated Law Dome ice cores to investigate sulphuric acid flux ratios for major eruptions over the period AD 1301-1995. We use additional data from other cores to investigate systematic spatial variability in the ratios. Only for the Kuwae eruption (Law Dome ice date AD 1459.5) was the H2SO4 flux larger than that deposited by Tambora (Law Dome ice date AD 1816.7).