2 resultados para Mesenteric vascular bed of rat

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The University of Maine Ice Sheet Model was used to study basal conditions during retreat of the Laurentide ice sheet in Maine. Within 150 km of the margin, basal melt rates average similar to 5 mm a(-1) during retreat. They decline over the next 100km, so areas of frozen bed develop in northern Maine during retreat. By integrating the melt rate over the drainage area typically subtended by an esker, we obtained a discharge at the margin of similar to 1.2 m(3) s(-1). While such a discharge could have moved the material in the Katahdin esker, it was likely too low to build the esker in the time available. Additional water from the glacier surface was required. Temperature gradients in the basal ice increase rapidly with distance from the margin. By conducting upward into the ice all of the additional viscous heat produced by any perturbation that increases the depth of flow in a flat conduit in a distributed drainage system, these gradients inhibit the formation of sharply arched conduits in which an esker can form. This may explain why eskers commonly seem to form near the margin and are typically segmented, with later segments overlapping onto earlier ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gravity wants to pull an ice sheet to the center of the Earth, but cannot because the Earth's crust is in the way, so ice is pushed out sideways instead. Or is it? The ice sheet "sees" nothing preventing it from spreading out except air, which is much less massive than ice. Therefore, does not ice rush forward to fill this relative vacuum; does not the relative vacuum suck ice into it, because Nature abhors a vacuum? If so, the ice sheet is not only pulled downward by gravity, it is also pulled outward by the relative vacuum. This pulling outward will be most rapid where the ice sheet encounters least resistance. The least resistance exists along the bed of ice streams, where ice-bed coupling is reduced by a basal water layer, especially if the ice stream becomes afloat and the floating part is relatively unconfined around its perimeter and unpinned to the sea floor. Ice streams are therefore fast currents of ice that develop near the margins of an ice sheet where these conditions exist. Because of these conditions, ice streams pull ice out of ice sheets and have pulling power equal to the longitudinal gravitational pulling force multiplied by the ice-stream velocity. These boundary conditions beneath and beyond ice streams can be quantified by a basal buoyancy factor that provides a life-cycle classification of ice streams into inception, growth, mature, declining and terminal stages, during which ice streams disintegrate the ice sheet. Surface profiles of ice streams are diagnostic of the stage in a life cycle and, hence, of the vitality of the ice sheet.