13 resultados para Mass balance model

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Local rates of change in ice-sheet thickness were calculated at IS sites in West Antarctica using the submergence velocity technique. This method entails a comparison of the vertical velocity of the ice sheet, measured using repeat global positioning system surveys of markers, and local long-term rates of snow accumulation obtained using firn-core stratigraphy. Any significant difference between these two quantities represents a thickness change with time. Measurements were conducted at sites located similar to 100-200 km apart along US ITASE traverse routes, and at several isolated locations. All but one of the sites are distributed in the Siple Coast and the Amundsen Sea basin along contours of constant elevation, along flowlines, across ice divides and close to regions of enhanced flow. Calculated rates of thickness change are different from site to site. Most of the large rates of change in ice thickness (similar to 10 cm a(-1) or larger) are observed in or close to regions of rapid flow, and are probably related to ice-dynamics effects. Near-steady-state conditions are calculated mostly at sites in the slow-moving ice-sheet interior and near the main West Antarctic ice divide. These results are consistent with regional estimates of ice-sheet change derived from remote-sensing measurements at similar locations in West Antarctica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snow-accumulation rates and rates of ice-thickness change (mass balance) are studied at several sites on Siple Dome, West Antarctica. Accumulation rates are derived from analyses of gross beta radioactivity in shallow firn cores located along a 60 km transect spanning both flanks and the crest of the dome. There is a north-south gradient in snow-accumulation rate across the dome that is consistent with earlier radar mapping of internal stratigraphy. Orographic processes probably control this distribution. Mass balance is inferred from the difference between global positioning system (GPS)-derived vertical velocities and snow-accumulation rates for sites close to the firn-core locations. Results indicate that there is virtually no net thickness change at four of the five sites. The exception is at the northernmost site where a small amount of thinning is detected, that appears to be inconsistent with other studies. A possible cause of this anomalous thinning is recent retreat of the grounding line of Ice Stream D.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lesni Potok stream drains a forested headwater catchment in the central Czech Republic. It was artificially acidified with hydrochloric acid (HCl) for four hours to assess the role of stream substrate in acid-neutralisation and recovery. The pH was lowered from 4.7 to 3.2. Desorption of Ca and MP and desorption or solution of Al dominated acid-neutralisation; Al mobilisation was more important later. The stream substrate released 4.542 meq Ca, 1, 184 meq Mg, and 2,329 meq Al over a 45 in long and I in wide stream segment, smaller amounts of Be. Cd, Fe, and Mn were released. Adsorption of SO42- and desorption of F- occurred during the acidification phase of the experiment. The exchange reactions were rapidly reversible for Ca, Mg and SO42- but not symmetric as the substrate resorbed 1083, 790 and 0 meq Ca, Mg, and Al. respectively, in a 4-hour recovery period. Desorption of SO42- occurred during the resorption of Ca and Mg. These exchange and dissolution reactions delay acidification, diminish the pH depression and retard recovery from episodic acidification. The behaviour of the stream substrate-water interaction resembles that for soil-soil water interactions. A mathematical dynamic mass-balance based model, MASS (Modelling Acidification of Stream Sediments), was developed which simulates the adsorption and desorption of base cations during the experiment and was successfully calibrated to the experimental data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Annual-layer thickness data, spanning AD 1534-2001, from an ice core from East Rongbuk Coll on Qomolangma (Mount Everest, Himalaya) yield an age-depth profile that deviates systematically from a constant accumulation-rate analytical model. The profile clearly shows that the mean accumulation rate has changed every 50-100 years. A numerical model was developed to determine the magnitude of these multi-decadal-scale rates. The model was used to obtain a time series of annual accumulation. The mean annual accumulation rate decreased from similar to 0.8 m ice equivalent in the 1500s to similar to 0.3 m in the mid-1800s. From similar to 1880 to similar to 1970 the rate increased. However, it has decreased since similar to 1970. Comparison with six other records from the Himalaya and the Tibetan Plateau shows that the changes in accumulation in East Rongbuk Col are broadly consistent with a regional pattern over much of the Plateau. This suggests that there may be an overarching mechanism controlling precipitation and mass balance over this area. However, a record from Dasuopu, only 125 km northwest of Qomolangma and 700 m higher than East Rongbuk Col, shows a maximum in accumulation during the 1800s, a time during which the East Rongbuk Col and Tibetan Plateau ice-core and tree-ring records show a minimum. This asynchroneity may be due to altitudinal or seasonal differences in monsoon versus westerly moisture sources or complex mountain meteorology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between similar to 6000 and 5000 years ago and since 1200-1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A. D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4 degrees +/- 1 degrees C, and sea ice extent will decrease by similar to 30%. Ice sheet models are not yet adequate enough to answer pressing questins about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth's climate and oceans.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The analytical force balance traditionally used in glaciology relates gravitational forcing to ice surface slope for sheet flow and to ice basal buoyancy for shelf flow. It is unable to represent stream flow as a transition from sheet flow to shelf flow by having gravitational forcing gradually passing from being driven by surface slope to being driven by basal buoyancy downslope along the length of an ice steam. This is a serious defect, because ice streams discharge up to 90% of ice from ice sheets into the sea. The defect is overcome by using a geometrical force balance that includes basal buoyancy, represented by the ratio of basal water pressure to ice overburden pressure, as a source of gravitational forcing. When combined with the mass balance, the geometrical force balance provides a holistic approach to ice flow in which resistance to gravitational flow must be summed upstream from the calving front of an ice shelf. This is not done in the analytical force balance, and it provides the ice-thinning rate required by gravitational collapse of ice sheets as interior ice is downdrawn by ice streams.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We compare ICESat data (2003-2004) to airborne laser altimetry data (1997-98 and 1999-2000) to monitor surface changes over portions of Van der Veen (VdVIS), Whillans (WIS) and Kamb ice streams (KIS) in the Ross Embayment of the West Antarctic Ice Sheet. The spatial pattern of detected surface changes is generally consistent with earlier observations. However, important changes have occurred during the past decade. For example, areas on the VdVIS and WIS, where large thinning was detected by the airborne surveys, are now closer to being in balance. The upper trunk of KIS continues to build up with thickening rates reaching 0.4 m/year. Our results provide new evidence that the overall mass balance of the region is becoming more positive, but a significant spatial variability exists. They also demonstrate the potential of ICESat data for detecting spatial patterns of surface elevation change in Antarctica.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rate of ice-sheet thickness change is calculated for 10 sites in Greenland by comparing measured values of ice vertical velocity and snow-accumulation rate. Vertical velocities are derived from repeat surveys of markers using precision global positioning system techniques, and accumulation rates are determined from stratigraphic analysis of firn cores. The results apply to time-scales covered by the firn-core records, which in most cases are a few decades. A spectrum of thickness-change rates is obtained, ranging from substantial thinning to slow thickening. The sites where ice-sheet thinning is indicated are located near the ice-sheet margin or in outlet glacier catchments. Interior and high-elevation sites are predominantly in balance or thickening slowly. Uncertainties in the rates of thickness change are dominated by errors in the determination of accumulation rates. The results of this work are broadly comparable with regional estimates of mass balance obtained from the analysis of catchment input vs discharge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The history of ice velocity and calving front position of Daugaard Jensen Gletscher, a large outlet glacier in East Greenland, is reconstructed from field measurements, aerial photography and satellite imagery for the period 1950-2001. The calving terminus of the glacier has remained in approximately the same position over the past similar to 50 years. There is no evidence of a change in ice motion between 1968 and 2001, based on a comparison of velocities derived from terrestrial surveying and feature tracking using sequential satellite images. Estimates of flux near the entrance to the fjord vs snow accumulation in the interior catchment show that Daugaard Jensen Gletscher has a small negative mass balance. This result is consistent with other mass-balance estimates for the inland region of the glacier.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Byrd Glacier has one of the largest ice catchment areas in Antarctica, delivers more ice to the Ross Ice Shelf than any other ice stream, and is the fastest of these ice streams. A force balance, combined with a mass balance, demonstrates that stream flow in Byrd Glacier is transitional from sheet flow in East Antarctica to shelf flow in the Ross Ice Shelf. The longitudinal pulling stress, calculated along an ice flowband from the force balance, is linked to variations of ice thickness, to the ratio of the basal water pressure to the ice overburden pressure where Byrd Glacier is grounded, and is reduced by an ice-shelf buttressing stress where Byrd Glacier is floating. Longitudinal tension peaks at pressure-ratio maxima in grounded ice and close to minima in the ratio of the pulling stress to the buttressing stress in floating ice. The longitudinal spacing of these tension peaks is rather uniform and, for grounded ice, the peaks occur at maxima in surface slope that have no clear relation to the bed slope. This implies that the maxima in surface slope constitute a "wave train" that is related to regular variations in ice-bed coupling, not primarily to bed topography. It is unclear whether these surface "waves" are "standing waves" or are migrating either upslope or downslope, possibly causing the grounding line to either retreat or advance. Deciding which is the case will require obtaining bed topography in the map plane, a new map of surface topography, and more sophisticated modeling that includes ice flow linked to subglacial hydrology in the map plane.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A mass balance calculation was made for the floating part of Byrd Glacier, using 1978-79 ice elevation and velocity data, over the 45 km of Byrd Glacier from its grounding line to where it leaves its fjord and merges with the Ross Ice Shelf. Smoothed basal melting rates were relatively uniform over this distance and averaged 12 +/- 2 m yr(-1).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ice thickness, computed within the fjord region of Byrd Glacier on the assumptions that Byrd Glacier is in mass-balance equilibrium and that ice velocity is entirely due to basal sliding, are on average 400 m less than measured ice thicknesses along a radio-echo profile. We consider four explanations for these differences: (1) active glacier ice is separated from a zone of stagnant ice near the base of the glacier by a shear zone at depth; (2) basal melting rates are some 8 m/yr; (3) internal shear occurs with no basal sliding in much of the region above the grounding zone; or (4) internal creep and basal sliding contribute to the flow velocity in varying proportions above the grounding zone. Large gradients of surface strain rate seem to invalidate the first explanation. Computed values of basal shear stress (140 to 200 kPa) provide insufficient frictional heat to melt the ice demanded by the second explanation. Both the third and fourth explanations were examined by making simplifying assumptions that prevented a truly quantitative evaluation of their merit. Nevertheless, there is no escaping the qualitative conclusion that internal shear contributes strongly to surface velocities measured on Byrd Glacier, as is postulated in both these explanations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Understanding the behavior of large outlet glaciers draining the Greenland Ice Sheet is critical for assessing the impact of climate change on sea level rise. The flow of marine-terminating outlet glaciers is partly governed by calving-related processes taking place at the terminus but is also influenced by the drainage of surface runoff to the bed through moulins, cracks, and other pathways. To investigate the extent of the latter effect, we develop a distributed surface-energy-balance model for Helheim Glacier, East Greenland, to calculate surface melt and thereby estimate runoff. The model is driven by data from an automatic weather station operated on the glacier during the summers of 2007 and 2008, and calibrated with independent measurements of ablation. Modeled melt varies over the deployment period by as much as 68% relative to the mean, with melt rates approximately 77% higher on the lower reaches of the glacier trunk than on the upper glacier. We compare melt variations during the summer season to estimates of surface velocity derived from global positioning system surveys. Near the front of the glacier, there is a significant correlation (on >95% levels) between variations in runoff (estimated from surface melt) and variations in velocity, with a 1 day delay in velocity relative to melt. Although the velocity changes are small compared to accelerations previously observed following some calving events, our findings suggest that the flow speed of Helheim Glacier is sensitive to changes in runoff. The response is most significant in the heavily crevassed, fast-moving region near the calving front. The delay in the peak of the cross-correlation function implies a transit time of 12-36 h for surface runoff to reach the bed.