5 resultados para LOW-ACCUMULATION SHELF
em DigitalCommons - The University of Maine Research
Resumo:
A series of ice cores from sites with different snow-accumulation rates across Law Dome, East Antarctica, was investigated for methanesulphonic acid (MSA) movement. The precipitation at these sites (up to 35 km apart) is influenced by the same air masses, the principal difference being the accumulation rate. At the low-accumulation-rate W20k site (0.17 in ice equivalent), MSA was completely relocated from the summer to winter layer. Moderate movement was observed at the intermediate-accumulation-rate site (0.7 in ice equivalent), Dome Summit South (DSS), while there was no evidence of movement at the high-accumulation-rate DE08 site (1.4 in ice equivalent). The main DSS record of MSA covered the epoch AD 1727-2000 and was used to investigate temporal post-depositional changes. Co-deposition of MSA and sea-salt ions was observed of the surface layers, outside of the main summer MSA peak, which complicates interpretation of these peaks as evidence of movement in deeper layers. A seasonal study of the 273 year DSS record revealed MSA migration predominantly from summer into autumn (in the up-core direction), but this migration was suppressed during the Tambora (1815) and unknown (1809) volcanic eruption period, and enhanced during an epoch (1770-1800) with high summer nitrate levels. A complex interaction between the gradients in nss-sulphate, nitrate and sea salts (which are influenced by accumulation rate) is believed to control the rate and extent of movement of MSA.
Resumo:
We combined 33 ice core records, 13 from the Northern Hemisphere and 20 from the Southern Hemisphere, to determine the timing and magnitude of the great Kuwae eruption in the mid-15th century. We extracted volcanic deposition signals by applying a high-pass loess filter to the time series and examining peaks that exceed twice the 31 year running median absolute deviation. By accounting for the dating uncertainties associated with each record, these ice core records together reveal a large volcanogenic acid deposition event during 1453 - 1457 A. D. The results suggest only one major stratospheric injection from the Kuwae eruption and confirm previous findings that the Kuwae eruption took place in late 1452 or early 1453, which may serve as a reference to evaluate and improve the dating of ice core records. The average total sulfate deposition from the Kuwae eruption was 93 kg SO4/km(2) in Antarctica and 25 kg SO4/km(2) in Greenland. The deposition in Greenland was probably underestimated since it was the average value of only two northern Greenland sites with very low accumulation rates. After taking the spatial variation into consideration, the average Kuwae deposition in Greenland was estimated to be 45 kg SO4/km(2). By applying the same technique to the other major eruptions of the past 700 years our result suggests that the Kuwae eruption was the largest stratospheric sulfate event of that period, probably surpassing the total sulfate deposition of the Tambora eruption of 1815, which produced 59 kg SO4/km(2) in Antarctica and 50 kg SO4/km(2) in Greenland.
Resumo:
We present new interpretations of deglaciation in McMurdo Sound and the western Ross Sea, with observationally based reconstructions of interactions between East and West Antarctic ice at the last glacial maximum (LGM), 16 000, 12 000, 8000 and 4000 sp. At the LGM? East Antarctic ice from Mulock Glacier split, one branch turned westward south of Ross Island but the other branch rounded Ross Island before flowing southwest into McMurdo Sound. This flow regime, constrained by an ice saddle north of Ross Island, is consistent with the reconstruction of Stuiver and others (1981a). After the LGM, grounding-line retreat was most rapid in areas with greatest water depth, especially along the Victoria Land coast. By 12 000 sp, the ice-now regime in McMurdo Sound changed to through-flowing Mulock Glacier ice, with lesser contributions from Koettlitz, Blue and Ferrar Glaciers, because the former ice saddle north of Ross Island was replaced by a dome. The modern flew regime was established similar to 4000 BP. Ice derived from high elevations on the Polar Plateau but now stranded on the McMurdo Ice Shelf, and the pattern of the Transantarctic Mountains erratics support our reconstructions of Mulock Glacier ice rounding Minna Bluff but with all ice from Skelton Glacier ablating south of the bluff. They are inconsistent with Drewry's (1979) LGM reconstruction that includes Skelton Glacier ice in the McMurdo-Sound through-flow. Drewry's (1979) model closely approximates our results for 12 000-4000 BP. Ice-sheet modeling holds promise for determining whether deglaciation proceeded by grounding-line retreat of an ice sheet that was largely stagnant, because it never approached equilibrium flowline profiles after the Ross Ice Shelf, grounded, or of a dynamic ice sheet with flowline profiles kept low by active ice streams that extended northward from present-day outlet glaciers after the Ross Ice Shelf grounded.
Resumo:
A procedure is presented for using a simple flowline model to calculate the fraction of the bed that is thawed beneath present-day ice sheets, and therefore for mapping thawed, frozen, melting and freezing basal thermal zones. The procedure is based on the proposition, easily demonstrated, that variations in surface slope along ice flowlines are due primarily to variations in bed topography and ice-bed coupling, where ice-bed coupling for sheet flow is represented by the basal thawed fraction. This procedure is then applied to the central flowlines of flow bands on the Antarctic ice sheet where accumulation rates, surface elevations and bed topography are mapped with sufficient accuracy, and where sheet flow rather than stream flow prevails. In East Antarctica, the usual condition is a low thawed fraction in subglacial highlands, but a high thawed fraction in subglacial basins and where ice converges on ice streams. This is consistent with a greater depression of the basal melting temperature and a slower rate of conducting basal heat to the surface where ice is thick, and greater basal frictional heat production where ice flow is fast, as expected for steady-state flow. This correlation is reduced or even reversed where steady-state flow has been disrupted recently, notably where ice-stream surges produced the Dibble and Dalton Iceberg Tongues, both of which are now stagnating. In West Antarctica, for ice draining into the Pine Island Bay polynya of the Amundsen Sea, the basal thawed fraction is consistent with a prolonged and ongoing surge of Pine Island Glacier and with a recently initiated surge of Thwaites Glacier. For ice draining into the Ross Ice Shelf, long ice streams extend nearly to the West Antarctic ice divide. Over the rugged bed topography near the ice divide, no correlation consistent with steady-state sheet flow exists between ice thickness and the basal thawed fraction. The bed is wholly thawed beneath ice streams, even where stream flow is slow. This is consistent with ongoing gravitational collapse of ice entering the Ross Sea embayment and with unstable flow in the ice streams.
Resumo:
A float-stopper mechanism was designed to drain fish holding tanks directly from the bottom. Unlike traditional, top-drawn standpipe systems, it allows continuous flushing of settled solid waste. It also prevents the accumulation of these wastes between the two standpipes that are used in bottom-drawn, double-walled standpipe systems. When suspended solids are forced upward between the outer and inner standpipes of such systems, a minimum velocity must be maintained to prevent sediment accumulation. This minimum velocity determines the minimum flow rate through the tank. The system described in this report flushes well over a wide range of flow rates.