2 resultados para Japanese eel
em DigitalCommons - The University of Maine Research
Resumo:
The endemic New Zealand longfin eel Anguilla dieffenbachi (hereafter, longfin eel), is overfished, and in southern South Island, New Zealand, rivers have recently become predominated by males. This study examined length and age at sexual differentiation in male eels in the Aparima River catchment (area, 1,375 km(2); mean flow, 20 m(3.)s(-1)) and the sex ratio and distribution of eels throughout the catchment. Longfin eels differentiated into males mostly at lengths from 300 to 460 mm and ages from 10 to 25+ years. Females were rare: Of 738 eels examined for sexual differentiation, 466 were males and 5 were females, and a few others, not examined, were large enough to be female. These counts suggest a male : female ratio among differentiated longfin eels of 68:1. Of 31 differentiated shortfin eels A. australis, less common in the Aparima River, 26 were females. Male longfin eels were distributed throughout the main stern and tributaries; undifferentiated eels were more prevalent in lower and middle reaches and in the main stem than in upper reaches and tributaries. In other studies, male longfin eels predominated commercial catches in the Aparima and four other southernmost rivers, by 2.4:1 to 13.6:1 males to females. The Aparima River had the most skewed sex ratio. Longfin eel catches from the Aparima River will become more male predominated because few sublegal-size females were present. The length-frequency distributions of eels in the present samples and in the commercial catches were truncated just above minimum legal size (about 460 mm), showing that few females escape the fishery. Historically, females predominated these rivers. The recent change in sex ratio is attributable partly to selective harvest of females, and partly to changes in the structure of the population from fishing, such that differentiation into males has been favored. Longevity, delayed sexual maturity, semel-parity, and endemism with restricted range make the longfin eel particularly vulnerable to overfishing.
Resumo:
Growth histories of yellow-phase American eels Anguilla rostrata collected in four rivers in Maine, were back-calculated from sagittal otolith increments. Our objectives were to first determine whether sexually dimorphic growth rates exist and then compare the growth histories of American eels from four rivers within a geographic region. For female eels, the maximum growth rate was 31.9 +/- 1.7 mm/year at age 8, decreasing to 25.1 +/- 2.9 mm/year at age 14. Males attained a maximum of 29.8 +/- 1.6 min/year at age 3, decreasing to a minimum of 17.9 +/- 1.3 mm/year at age 11. Females grew faster than males after age 4 and had a slower reduction in growth rate with age. These faster growth rates among females were similar in all four rivers. The observed growth rates are not consistent with current life history hypotheses and may indicate an alternative life history strategy. Because female eels benefit from a larger size (i.e., size refuge, increased fecundity, and greater niche breadth), they would benefit from a higher-risk growth strategy that increases growth rate during their earlier years and reduces the amount of time spent in an unfavorable size-class. The tradeoffs (i.e., mortality, developmental rate, pathogen resistance, and longevity) associated with this faster growth rate may not favor the males' life history requirements. Male eels do not achieve the size of females and therefore are not subject to the advantages associated with being larger. Therefore, they may use a risk-averse strategy that maintains submaximum growth rates to obtain the minimum size necessary to mature and complete the spawning migration while reducing the adverse affects of faster growth rates. We postulate that, in eels, intrinsic growth rates should be considered a life history trait that has evolved to meet the life history requirements of each sex.