1 resultado para Intensity Aberrations
em DigitalCommons - The University of Maine Research
Resumo:
Using US National Centers for Environmental Prediction/US National Center for Atmospheric Research re-analysis data, we investigate the relationships between crustal ion (nssCa(2+)) concentrations from three West Antarctic ice cores, namely, Siple Dome (SD), ITASE00-1 (IT001) and ITASE01-5 (IT015), and primary components of the climate system, namely, air pressure/geopotential height, zonal (u) and meridional (v) wind strength. Linear correlation analyses between nssCa(2+) concentrations and both air-pressure and wind fields for the period of overlap between records indicate that the SD nssCa(2+) variation is positively correlated with spring circumpolar zonal wind, while IT001 nssCa(2+) has a positive correlation with circumpolar zonal wind throughout the year (r > 0.3, p < 0.01). Intensified Southern Westerlies circulation is conducive to transport of more crustal aerosols to both sites. Further correlation analyses between nssCa(2+) concentrations from SD and IT001 and atmospheric circulation suggest that the high inland plateau (represented by core IT001) is largely influenced by transport from the upper troposphere. IT015 nssCa(2+) is negatively correlated with westerly wind in October and November, suggesting that stronger westerly circulation may weaken the transport of crustal species to IT015. Correlations of nssCa(2+) from the three ice cores with the Antarctic Oscillation index are consistent with results developed from the wind-field investigation. In addition, calibration between nssCa(2+) concentration and the multivariate El Nino-Southern Oscillation (ENSO) index shows that crustal species transport to IT001 is enhanced during strong ENSO events.