2 resultados para Information storage and retrieval systems Management
em DigitalCommons - The University of Maine Research
Resumo:
This paper considers ocean fisheries as complex adaptive systems and addresses the question of how human institutions might be best matched to their structure and function. Ocean ecosystems operate at multiple scales, but the management of fisheries tends to be aimed at a single species considered at a single broad scale. The paper argues that this mismatch of ecological and management scale makes it difficult to address the fine-scale aspects of ocean ecosystems, and leads to fishing rights and strategies that tend to erode the underlying structure of populations and the system itself. A successful transition to ecosystem-based management will require institutions better able to economize on the acquisition of feedback about the impact of human activities. This is likely to be achieved by multiscale institutions whose organization mirrors the spatial organization of the ecosystem and whose communications occur through a polycentric network. Better feedback will allow the exploration of fine-scale science and the employment of fine-scale fishing restraints, better adapted to the behavior of fish and habitat. The scale and scope of individual fishing rights also needs to be congruent with the spatial structure of the ecosystem. Place-based rights can be expected to create a longer private planning horizon as well as stronger incentives for the private and public acquisition of system relevant knowledge.
Resumo:
The endemic New Zealand longfin eel Anguilla dieffenbachi (hereafter, longfin eel), is overfished, and in southern South Island, New Zealand, rivers have recently become predominated by males. This study examined length and age at sexual differentiation in male eels in the Aparima River catchment (area, 1,375 km(2); mean flow, 20 m(3.)s(-1)) and the sex ratio and distribution of eels throughout the catchment. Longfin eels differentiated into males mostly at lengths from 300 to 460 mm and ages from 10 to 25+ years. Females were rare: Of 738 eels examined for sexual differentiation, 466 were males and 5 were females, and a few others, not examined, were large enough to be female. These counts suggest a male : female ratio among differentiated longfin eels of 68:1. Of 31 differentiated shortfin eels A. australis, less common in the Aparima River, 26 were females. Male longfin eels were distributed throughout the main stern and tributaries; undifferentiated eels were more prevalent in lower and middle reaches and in the main stem than in upper reaches and tributaries. In other studies, male longfin eels predominated commercial catches in the Aparima and four other southernmost rivers, by 2.4:1 to 13.6:1 males to females. The Aparima River had the most skewed sex ratio. Longfin eel catches from the Aparima River will become more male predominated because few sublegal-size females were present. The length-frequency distributions of eels in the present samples and in the commercial catches were truncated just above minimum legal size (about 460 mm), showing that few females escape the fishery. Historically, females predominated these rivers. The recent change in sex ratio is attributable partly to selective harvest of females, and partly to changes in the structure of the population from fishing, such that differentiation into males has been favored. Longevity, delayed sexual maturity, semel-parity, and endemism with restricted range make the longfin eel particularly vulnerable to overfishing.