2 resultados para History of ideas
em DigitalCommons - The University of Maine Research
Resumo:
Unroofing of the Black Mountains, Death Valley, California, has resulted in the exposure of 1.7 Ga crystalline basement, late Precambrian amphibolite facies metasedimentary rocks, and a Tertiary magmatic complex. The Ar-40/Ar-39 cooling ages, obtained from samples collected across the entire length of the range (>55 km), combined with geobarometric results from synextensional intrusions, provide time-depth constraints on the Miocene intrusive history and extensional unroofing of the Black Mountains. Data from the southeastern Black Mountains and adjacent Greenwater Range suggest unroofing from shallow depths between 9 and 10 Ma. To the northwest in the crystalline core of the range, biotite plateau ages from approximately 13 to 6.8 Ma from rocks making up the Death Valley turtlebacks indicate a midcrustal residence (with temperatures >300-degrees-C) prior to extensional unroofing. Biotite Ar-40/Ar-39 ages from both Precambrian basement and Tertiary plutons reveal a diachronous cooling pattern of decreasing ages toward the northwest, subparallel to the regional extension direction. Diachronous cooling was accompanied by dike intrusion which also decreases in age toward the northwest. The cooling age pattern and geobarometric constraints in crystalline rocks of the Black Mountains suggest denudation of 10-15 km along a northwest directed detachment system, consistent with regional reconstructions of Tertiary extension and with unroofing of a northwest deepening crustal section. Mica cooling ages that deviate from the northwest younging trend are consistent with northwestward transport of rocks initially at shallower crustal levels onto deeper levels along splays of the detachment. The well-known Amargosa chaos and perhaps the Badwater turtleback are examples of this "splaying" process. Considering the current distance of the structurally deepest samples away from moderately to steeply east tilted Tertiary strata in the southeastern Black Mountains, these data indicate an average initial dip of the detachment system of the order of 20-degrees, similar to that determined for detachment faults in west central Arizona and southeastern California. Beginning with an initially listric geometry, a pattern of footwall unroofing accompanied by dike intrusion progress northwestward. This pattern may be explained by a model where migration of footwall flexures occur below a scoop-shaped banging wall block. One consequence of this model is that gently dipping ductile fabrics developed in the middle crust steepen in the upper crust during unloading. This process resolves the low initial dips obtained here with mapping which suggests transport of the upper plate on moderately to steeply dipping surfaces in the middle and upper crust.
Resumo:
In the Mt. Olympos region of northeastern Greece, continental margin strata and basement rocks were subducted and metamorphosed under blueschist facies conditions, and thrust over carbonate platform strata during Alpine orogenesis. Subsequent exposure of the subducted basement rocks by normal faulting has allowed an integrated study of the timing of metamorphism, its relationship to deformation, and the thermal history of the subducted terrane. Alpine low-grade metamorphic assemblages occur at four structural levels. Three thrust sheets composed of Paleozoic granitic basement and Mesozoic metasedimentary cover were thrust over Mesozoic carbonate rocks and Eocene flysch; thrusting and metamorphism occurred first in the highest thrust sheets and progressed downward as units were imbricated from NE to SW. 40Ar/39Ar spectra from hornblende, white mica, and biotite samples indicate that the upper two units preserve evidence of four distinct thermal events: (1) 293–302 Ma crystallization of granites, with cooling from >550°C to <325°C by 284 Ma; (2) 98–100 Ma greenschist to blueschist-greenschist transition facies metamorphism (T∼350–500°C) and imbrication of continental thrust sheets; (3) 53–61 Ma blueschist facies metamorphism and deformation of the basement and continental margin units at T<350–400°C; (4) 36–40 Ma thrusting of blueschists over the carbonate platform, and metamorphism at T∼200–350°C. Only the Eocene and younger events affected the lower two structural packages. A fifth event, indicated by diffusive loss profiles in microcline spectra, reflects the beginning of uplift and cooling to T<100–150°C at 16–23 Ma, associated with normal faulting which continued until Quaternary time. Incomplete resetting of mica ages in all units constrains the temperature of metamorphism during continental subduction to T≤350°C, the closure temperature for Ar in muscovite. The diffusive loss profiles in micas and K-feldspars enable us to “see through” the younger events to older events in the high-T parts of the release spectra. Micas grown during earlier metamorphic events lost relatively small amounts of Ar during subsequent high pressure-low temperature metamorphism. Release spectra from phengites grown during Eocene metamorphism and deformation record the ages of the Ar-loss events. Alpine deformation in northern Greece occurred over a long time span (∼90 Ma), and involved subduction and episodic imbrication of continental basement before, during, and after the collision of the Apulian and Eurasian plates. Syn-subduction uplift and cooling probably combined with intermittently higher cooling rates during extensional events to preserve the blueschist facies mineral assemblages as they were exhumed from depths of >20 km. Extension in the Olympos region was synchronous with extension in the Mesohellenic trough and the Aegean back-arc, and concurrent with westward-progressing shortening in the external Hellenides.