2 resultados para GELATIN CONDUITS
em DigitalCommons - The University of Maine Research
Resumo:
The University of Maine Ice Sheet Model was used to study basal conditions during retreat of the Laurentide ice sheet in Maine. Within 150 km of the margin, basal melt rates average similar to 5 mm a(-1) during retreat. They decline over the next 100km, so areas of frozen bed develop in northern Maine during retreat. By integrating the melt rate over the drainage area typically subtended by an esker, we obtained a discharge at the margin of similar to 1.2 m(3) s(-1). While such a discharge could have moved the material in the Katahdin esker, it was likely too low to build the esker in the time available. Additional water from the glacier surface was required. Temperature gradients in the basal ice increase rapidly with distance from the margin. By conducting upward into the ice all of the additional viscous heat produced by any perturbation that increases the depth of flow in a flat conduit in a distributed drainage system, these gradients inhibit the formation of sharply arched conduits in which an esker can form. This may explain why eskers commonly seem to form near the margin and are typically segmented, with later segments overlapping onto earlier ones.
Resumo:
The polychaete Nereis virens burrows through muddy sediments by exerting dorsoventral forces against the walls of its tongue-depressor- shaped burrow to extend an oblate hemispheroidal crack. Stress is concentrated at the crack tip, which extends when the stress intensity factor (K-I) exceeds the critical stress intensity factor (K-Ic). Relevant forces were measured in gelatin, an analog for elastic muds, by photoelastic stress analysis, and were 0.015 +/- 0.001 N (mean +/- s.d.;N= 5). Measured elastic moduli (E) for gelatin and sediment were used in finite element models to convert the forces in gelatin to those required in muds to maintain the same body shapes observed in gelatin. The force increases directly with increasing sediment stiffness, and is 0.16 N for measured sediment stiffness of E=2.7x10(4) Pa. This measurement of forces exerted by burrowers is the first that explicitly considers the mechanical behavior of the sediment. Calculated stress intensity factors fall within the range of critical values for gelatin and exceed those for sediment, showing that crack propagation is a mechanically feasible mechanism of burrowing. The pharynx extends anteriorly as it everts, extending the crack tip only as far as the anterior of the worm, consistent with wedge-driven fracture and drawing obvious parallels between soft-bodied burrowers and more rigid, wedge-shaped burrowers(i.e. clams). Our results raise questions about the reputed high energetic cost of burrowing and emphasize the need for better understanding of sediment mechanics to quantify external energy expenditure during burrowing.