3 resultados para Frictional Forces

em DigitalCommons - The University of Maine Research


Relevância:

60.00% 60.00%

Publicador:

Resumo:

At Engabreen, Norway, an instrumented panel containing a decimetric obstacle was mounted flush With the bed surface beneath 210 m of ice. Simultaneous measurements of normal and shear stresses, ice velocity and temperature were obtained as dirty basal ice flowed past the obstacle. Our measurements were broadly consistent with ice thickness, flow conditions and bedrock topography near the site of the experiment. Ice speed 0.45 m above the bed was about 130 mm d(-1), much less than the surface velocity of 800 mm d(-1) Average normal stress on the panel was 1.0-1.6 MPa, smaller than the expected ice overburden pressure. Normal stress was larger and temperature was lower on the stoss side than on the lee side, in accord with flow dynamics and equilibrium thermodynamics. Annual differences in normal stresses were correlated with changes in sliding speed and ice-flow direction. These temporal variations may have been caused by changes in ice rheology associated with changes in sediment concentration, water content or both. Temperature and normal stress were generally correlated, except when clasts presumably collided with the panel. Temperature gradients in the obstacle indicated that regelation was negligible, consistent with the obstacle size. Melt rate was about 10% of the sliding speed. Despite high sliding speed, no significant ice/bed separation was observed in the lee of the obstacle. Frictional forces between sediment particles in the ice and the panel, estimated from Hallet's (1981) model, indicated that friction accounted for about 5% of the measured bed-parallel force. This value is uncertain, as friction theories are largely untested. Some of these findings agree with sliding theories, others do not.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Empirical data suggest that the race of calving of grounded glaciers terminating in water is directly proportional to the water depth. Important controls on calving may be the extent to which a calving face tends to become oversteepened by differential flow within the ice and the extent to which bending moments promote extrusion and bottom crevassing at the base of a calving face. Numerical modelling suggests that the tendency to become oversteepened increases roughly linearly with water depth. In addition, extending longitudinal deviatoric stresses at the base of a calving face increase with water depth. These processes provide a possible physical explanation for the observed calving-rate/water-depth relation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polychaete Nereis virens burrows through muddy sediments by exerting dorsoventral forces against the walls of its tongue-depressor- shaped burrow to extend an oblate hemispheroidal crack. Stress is concentrated at the crack tip, which extends when the stress intensity factor (K-I) exceeds the critical stress intensity factor (K-Ic). Relevant forces were measured in gelatin, an analog for elastic muds, by photoelastic stress analysis, and were 0.015 +/- 0.001 N (mean +/- s.d.;N= 5). Measured elastic moduli (E) for gelatin and sediment were used in finite element models to convert the forces in gelatin to those required in muds to maintain the same body shapes observed in gelatin. The force increases directly with increasing sediment stiffness, and is 0.16 N for measured sediment stiffness of E=2.7x10(4) Pa. This measurement of forces exerted by burrowers is the first that explicitly considers the mechanical behavior of the sediment. Calculated stress intensity factors fall within the range of critical values for gelatin and exceed those for sediment, showing that crack propagation is a mechanically feasible mechanism of burrowing. The pharynx extends anteriorly as it everts, extending the crack tip only as far as the anterior of the worm, consistent with wedge-driven fracture and drawing obvious parallels between soft-bodied burrowers and more rigid, wedge-shaped burrowers(i.e. clams). Our results raise questions about the reputed high energetic cost of burrowing and emphasize the need for better understanding of sediment mechanics to quantify external energy expenditure during burrowing.