2 resultados para Fractions of phosphorus

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rate of proteolysis of amino acids was used to assess the nutritional lability of various materials making up estuarine seston in 3 Maine, USA, estuaries. Physical separations of subcellular fractions of phytoplankton cells led to higher proteolysis rate constants for the cytoplasmic fraction (>1.2 h(-1)) than for the membrane fraction (0.2 to 1 h(-1)). Whole cells, copepod fecal pellets, bottom sediments, and estuarine seston had overlapping ranges of rate constants of 0.17 to 1.3 h(-1), which were indistinguishable from one another. Protein pools in the seston of these estuaries throughout the seasons were dominated by phytoplankton production and its fresh detrital products. Inverse relationships between proteolysis rate constants for estuarine seston and the ratios of pheopigments to chlorophyll indicates that the average lability of seston decreases with the disappearance of cytoplasmic material in suspension. This kinetic approach to the quality of food resources implies the existence of different pools of digestible protein for estuarine heterotrophs with different gut residence times. Preferential enrichment of membrane components in sestonic detritus may result from the differential lability of proteins in cytoplasm versus membrane components of cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Total nitrogen (TN) loadings in riverine sediments and their coastal depocenters were compared for Il river systems worldwide to assess the potential impact of riverine particulates on coastal nitrogen budgets. Strong relationships between sediment specific surface area and TN allow these impacts to be estimated without the intense sampling normally required to achieve such budgets. About half of the systems showed higher nitrogen loadings in the riverine sediments than those from the coastal depocenter. In spite of uncertainties, these comparisons indicate that large, turbid rivers, such as the Amazon, Huanghe, and the Mississippi, deliver sediments that in turn release significant or major fractions of the total riverine nitrogen delivery. Riverine particulates must therefore be considered an essential factor in watershed nutrient loading to coastal ecosystems and may affect delivered nutrient ratios as well as total nutrient loading. The relative importance of particulate versus dissolved delivery has decreased over recent decades in the Mississippi as a result of damming and fertilizer use in the watershed.