2 resultados para Floating exchange rate regime
em DigitalCommons - The University of Maine Research
Resumo:
Bending shear was observed to produce nearly vertical shear bands in a calving ice wall standing on dry land on Deception Island (Iat. 63.0 oS., long. 60.6 W.), and slabs calved straight downward when shear rupture occurred along these shear bands (Hughes, 1989). A formula for the calving rate was developed from the Deception Island data, and we have attempted to justify generalizing this formula to include ice walls standing along beaches or in water. These are environments in which a wave-washed groove develops along the base of the ice wall or along a water line above the base. The rate of wave erosion provides an alternative mechanism for controlling the calving rate in these environments. We have determined that the rate at which bending creep produces nearly vertical shear bands, along which shear r upture occurs, controls the calving rate in all environments. Shear rupture occurs at a calving shear stress of about I bar. Our results justify using the calving formula to compute the calving rate of ice walls in computer models of ice-sheet dynamics. This is especially important in simulating retreat of Northern Hemisphere ice sheets during the last deglaciation, when marine and lacustrine environments were common along retreating ice margins. These margins would have been ice walls standing along beaches or in water, because floating ice shelves are not expected in the ablation zone of retreating ice sheets.
Resumo:
Jakobshavn Isbrae is a major ice stream that drains the west-central Greenland ice sheet and becomes afloat in Jakobshavn Isfiord (69degreesN, 49degreesW), where it has maintained the world's fastest-known sustained velocity and calving rate (7 km a(-1)) for at least four decades. The floating portion is approximately 12 km long and 6 km wide. Surface elevations and motion vectors were determined photogrammetrically for about 500 crevasses on the floating ice, and adjacent grounded ice, using aerial photographs obtained 2 weeks apart in July 1985. Surface strain rates were computed from a mesh of 399 quadrilateral elements having velocity measurements at each corner. It is shown that heavy crevassing of floating ice invalidates the assumptions of linear strain theory that (i) surface strain in the floating ice is homogeneous in both space and time, (ii) the squares and products of strain components are nil, and (iii) first- and second-order rotation components are small compared to strain components. Therefore, strain rates and rotation rates were also computed using non-linear strain theory. The percentage difference between computed linear and non-linear second invariants of strain rate per element were greatest (mostly in the range 40-70%) where crevassing is greatest. Isopleths of strain rate parallel and transverse to flow and elevation isopleths relate crevassing to known and inferred pinning points.