2 resultados para Fanning, Charlotte Fall, 1809-1896.

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A volcanic signal observed in ice cores from both polar regions six years prior to Tambora is attributed to an unknown tropical eruption in 1809. Recovery of dacitic tephra from the 1809 horizon in a Yukon ice core ( Eclipse) that is chemically distinct from andesitic 1809 tephra found in Antarctic ice cores indicates a second eruption in the Northern Hemisphere at this time. Together with the similar magnitude and timing of the 1809 volcanic signal in the Arctic and Antarctic, this could suggest a large tropical eruption produced the sulfate and Antarctic tephra and a minor Northern Hemisphere eruption produced the Eclipse tephra. Nonetheless, the possibility that there were coincidental eruptions of similar magnitude in both hemispheres, rather than a single tropical eruption, should not be discounted. Correctly attributing the source of the 1809 volcanic signal has important implications for modeling the magnitude and latitudinal distribution of volcanic radiative forcing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SeaWiFS (Sea-viewing Wide Field-of-view Sensor) chlorophyll data revealed strong interannual variability in fall phytoplankton dynamics in the Gulf of Maine, with 3 general features in any one year: (1) rapid chlorophyll increases in response to storm events in fall; (2) gradual chlorophyll increases in response to seasonal wind-and cooling-induced mixing that gradually deepens the mixed layer; and (3) the absence of any observable fall bloom. We applied a mixed-layer box model and a 1-dimensional physical-biological numerical model to examine the influence of physical forcing (surface wind, heat flux, and freshening) on the mixed-layer dynamics and its impact on the entrainment of deep-water nutrients and thus on the appearance of fall bloom. The model results suggest that during early fall, the surface mixed-layer depth is controlled by both wind-and cooling-induced mixing. Strong interannual variability in mixed-layer depth has a direct impact on short-and long-term vertical nutrient fluxes and thus the fall bloom. Phytoplankton concentrations over time are sensitive to initial pre-bloom profiles of nutrients. The strength of the initial stratification can affect the modeled phytoplankton concentration, while the timing of intermittent freshening events is related to the significant interannual variability of fall blooms.