2 resultados para F0
em DigitalCommons - The University of Maine Research
Resumo:
Electron and ion microprobe data on two samples of welshite from the type locality of Langban, Sweden, gave analytical totals of 99.38-99.57 wt.% and BeO contents of 4.82-5.11 wt.%, corresponding to 1.692-1.773 Be/20 O. Mossbauer and optical spectra of one of these samples gave Fe-[iv](3+)/Sigma Fe = 0.91, Fe-[iv](2+)/Sigma Fe = 0.09, and no evidence of Mn3+. The resulting formula for this sample is Ca2Mg3.8Mn0.62+Fe0.12+Sb1.55+O2[Si2.8Be1.7Fe0.653+Al0.7As0.17O18], and that for the second sample, Ca2Mg3.8Mn0.12+Fe0.12+F0.83+Sb1.25+O2[Si2.8Be1.8F0.653+Al0.25As0.25O18], is related by the substitution involving tetrahedral and octahedral sites: 0.59([vi,iv])(Fe,Al)(3+) approximate to 0.42([vi])(Mg,Mn,Fe)(2+) + 0.21(Sb-[vi],As-[iv])(5+), i.e. 3([vi,iv]) M3+ = 2([vi])M(2+) + M-[vi,iv](5+). WelShite is distinctive among aenigmatite-group minerals in the high proportion of Fe 3+ in tetrahedral coordination and is unique in its Be content, substantially exceeding 1Be per formula unit. Given the cation distributions in other minerals related to aenigmatite, we think it is reasonable to assume that at least one tetrahedral site is >50% occupied by Be and that one octahedral site is >50% occupied by Sb, so that welshite should be retained as a distinct species with its own name in the aenigmatite group.
Resumo:
In 1884, Lorenzen proposed the formula MgAI2SiO6 for his new mineral kornerupine from Fiskenæsset and did not suspect it to contain boron. Lacroix and de Gramont (1919) reported boron in Fiskenæsset kornerupine, while Herd (1973) found none. New analyses (ion microprobe mass analyser and spectrophotometric) of kornerupine in three specimens from the type locality, including the specimens analysed by Lorenzen and Herd, indicate the presence of boron in all three, in amounts ranging from 0.50 to 1.44 wt.% B203, e.g. (Li0.04 Na0.01 Ca0.01) (Mg3.49 Mn0.01 Fe0.17 Ti0.01 Al5.64)Σ9.30 (Si3.67 Al1.02 B0.31)Σ5 O21 (OH0.99 F0.01) for Lorenzen's specimen. Textures and chemical compositions suggest that kornerupine crystallized in equilibrium in the following assemblages, all with anorthite (An 92-95) and phlogopite (XFe = atomic Fe/(Fe + Mg) = 0.028-0.035): (1) kornerupine (0.045)-gedrite (0.067); (2) kornerupine (0.038-0.050)-sapphirine (0.032-0.035); and (3) kornerupine (0.050)-hornblende. Fluorine contents of kornerupine range from 0.01 to 0.06%, of phlogopite, from 0.09 to 0.10%. In the first assemblage, sapphirine (0.040) and corundum are enclosed in radiating bundles of kornerupine; additionally sapphirine, corundum, and/or gedrite occur with chlorite and pinite (cordierite?) as breakdown products of kornerupine. Kornerupine may have formed by reactions such as: gedrite + sapphirine + corundum + B203 (in solution) + H20 = kornerupine + anorthite + Na-phlogopite under conditions of the granulite facies. Boron for kornerupine formation was most likely remobilized by hydrous fluids from metasedimentary rocks occurring along the upper contact of the Fiskenæsset gabbro-anorthosite complex with amphibolite.