4 resultados para Equilibrium Thickness

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rate of ice-sheet thickness change is calculated for 10 sites in Greenland by comparing measured values of ice vertical velocity and snow-accumulation rate. Vertical velocities are derived from repeat surveys of markers using precision global positioning system techniques, and accumulation rates are determined from stratigraphic analysis of firn cores. The results apply to time-scales covered by the firn-core records, which in most cases are a few decades. A spectrum of thickness-change rates is obtained, ranging from substantial thinning to slow thickening. The sites where ice-sheet thinning is indicated are located near the ice-sheet margin or in outlet glacier catchments. Interior and high-elevation sites are predominantly in balance or thickening slowly. Uncertainties in the rates of thickness change are dominated by errors in the determination of accumulation rates. The results of this work are broadly comparable with regional estimates of mass balance obtained from the analysis of catchment input vs discharge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeat airborne laser altimeter measurements are used to derive surface elevation changes on parts of Whillans Ice Stream and Ice Stream C, West Antarctica. Elevation changes are converted to estimates of ice equivalent thickness change using local accumulation rates, surface snow densities and vertical bedrock motions. The surveyed portions of two major tributaries of Whillans Ice Stream are found to be thinning almost uniformly at an average rate of similar to 1 m a(-1). Ice Stream C has a complicated elevation-change pattern, but is generally thickening. These results are used to estimate the contribution of each surveyed region to the current rate of global sea-level rise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice thickness, computed within the fjord region of Byrd Glacier on the assumptions that Byrd Glacier is in mass-balance equilibrium and that ice velocity is entirely due to basal sliding, are on average 400 m less than measured ice thicknesses along a radio-echo profile. We consider four explanations for these differences: (1) active glacier ice is separated from a zone of stagnant ice near the base of the glacier by a shear zone at depth; (2) basal melting rates are some 8 m/yr; (3) internal shear occurs with no basal sliding in much of the region above the grounding zone; or (4) internal creep and basal sliding contribute to the flow velocity in varying proportions above the grounding zone. Large gradients of surface strain rate seem to invalidate the first explanation. Computed values of basal shear stress (140 to 200 kPa) provide insufficient frictional heat to melt the ice demanded by the second explanation. Both the third and fourth explanations were examined by making simplifying assumptions that prevented a truly quantitative evaluation of their merit. Nevertheless, there is no escaping the qualitative conclusion that internal shear contributes strongly to surface velocities measured on Byrd Glacier, as is postulated in both these explanations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At Engabreen, Norway, an instrumented panel containing a decimetric obstacle was mounted flush With the bed surface beneath 210 m of ice. Simultaneous measurements of normal and shear stresses, ice velocity and temperature were obtained as dirty basal ice flowed past the obstacle. Our measurements were broadly consistent with ice thickness, flow conditions and bedrock topography near the site of the experiment. Ice speed 0.45 m above the bed was about 130 mm d(-1), much less than the surface velocity of 800 mm d(-1) Average normal stress on the panel was 1.0-1.6 MPa, smaller than the expected ice overburden pressure. Normal stress was larger and temperature was lower on the stoss side than on the lee side, in accord with flow dynamics and equilibrium thermodynamics. Annual differences in normal stresses were correlated with changes in sliding speed and ice-flow direction. These temporal variations may have been caused by changes in ice rheology associated with changes in sediment concentration, water content or both. Temperature and normal stress were generally correlated, except when clasts presumably collided with the panel. Temperature gradients in the obstacle indicated that regelation was negligible, consistent with the obstacle size. Melt rate was about 10% of the sliding speed. Despite high sliding speed, no significant ice/bed separation was observed in the lee of the obstacle. Frictional forces between sediment particles in the ice and the panel, estimated from Hallet's (1981) model, indicated that friction accounted for about 5% of the measured bed-parallel force. This value is uncertain, as friction theories are largely untested. Some of these findings agree with sliding theories, others do not.