3 resultados para Enumeration of bacteria
em DigitalCommons - The University of Maine Research
Resumo:
The brown alga Ascophyllum nodosum is a dominant rocky intertidal organism throughout much of the North Atlantic Ocean, yet its inability to colonize exposed or denuded shores is well recognized. Our experimental data show that wave action is a major source of mortality to recently settled zygotes. Artificially recruited zygotes consistently exhibited a Type IV survivorship curve in the presence of moving water. As few as 10, but often only 1 relatively low energy wave removed 85 to 99% of recently settled zygotes. Increasing the setting time for attachment of zygotes (prior to disturbance from water movement) had a positive effect on survival. However, survival was significantly lower at high densities, and decreased at long (24 h) setting times, probably as a result of bacteria on the surface of zygotes. Spatial refuges provided significant protection from gentle water movement but relatively little protection from waves.
Resumo:
Although deposit-feeding macrofauna consume and digest sedimentary bacteria, it is unclear whether feeding rates and digestion efficiencies are high enough to significantly impact the composition and abundance of bacteria in marine sediments. It is likely that both feeding rates and efficiency of digestion vary markedly through space and time. We used a turbidimetric assay to compare the rate of bacteriolysis by digestive fluids collected seasonally from the deposit-feeding polychaete Arenicola marina. Under standardized, experimental conditions, bacteriolytic rates represent concentrations of lytic agents. This concentration was found to vary significantly throughout the year (p = 0.001), showing greater than a 2x range. Lytic agent concentration was positively correlated with bioavailable amino acid concentrations in the surface sediment (r = 0.85, p = 0.03) but showed no apparent relationship to other proxies for food resources (e.g, chl a), sediment temperature, or gut throughput time. In vitro, temperature has been shown to have a strong positive influence on bacteriolytic rate. Temperature has no influence, however, on the in situ concentration of lytic agent in gut fluids, thus it appears that compensation for this temperature dependence is unimportant. These findings, combined with previous kinetics studies with A. marina gut fluids, predict that the quantitative influence of deposit feeding on the microbial ecology of sediments will exhibit clear seasonal variation.
Resumo:
This is an investigation into the microbially mediated processes involved in the transformation of arsenic. With the recent change in the Federal Maximum Contaminant Level for arsenic in drinking water, an increasing amount of resources are being devoted to understanding the mechanisms involved in the movement of arsenic. Arsenic in drinking water typically comes from natural sources, but the triggers that result in increased release of arsenic from parent material are poorly understood. Knowledge of these processes is necessary in order to make sound engineering decisions regarding drinking water management practices. Recent years have brought forth the idea that bacteria play a significant role in arsenic cycling. Groundwater is a major source of potable water in this and many other countries. To date, no reports have been made indicating the presence and activity of arsenate reducing bacteria in groundwater settings, which may increase dissolved arsenic concentrations. This research was designed to address this question and has shown that these bacteria are present in Maine groundwater. Two Maine wells were sampled in order to culture resident bacteria that are capable of dissimilatory arsenate reduction. Samples were collected using anaerobic techniques fiom wells in Northport and Green Lake. These samples were amended with specific compounds to enrich the resident population of arsenate utilizing bacteria. These cultures were monitored over time to establish rates of arsenate reduction. Cultures fiom both sites exhibited arsenate reduction in initial enrichment cultures. Isolates obtained fiom the Green Lake enrichments, however, did not reduce arsenate. This indicates either that a symbiotic relationship was required for the observed arsenate reduction or that fast-growing fermentative organisms that could survive in high arsenate media were picked in the isolation procedure. The Northport cultures exhibited continued arsenate reduction after isolation and successive transfers into fiesh media. The cultured bacteria reduced the majority of 1 a arsenate solutions in less than one week, accompanied by a corresponding oxidation of lactate. The 16s rRNA fiom the isolate was arnplifled and sequenced. The results of the DNA sequence analysis indicate that the rRNA sequence of the bacteria isolated at the Northport site is unique. This means that this strain of bacteria has not been reported before. It is in the same taxonomic subgroup as two previously described arsenate respirers. The implications of this study are significant. The fact that resident bacteria are capable of reducing arsenate has implications for water management practices. Reduction of arsenate to arsenite increases the mobility of the compound, as well as the toxicity. An understanding of the activity of these types of organisms is necessary in order to understand the contribution they are making to arsenic concentrations in drinking water. The next step in this work would be to quantitj the actual loading of dissolved arsenic present in aquifers because of these organisms.