2 resultados para Eighteenth-century Dublin
em DigitalCommons - The University of Maine Research
Resumo:
Ships’ protests have been used for centuries as legal documents to record and detail damages and indemnify Captains from fault. We use them in this article, along with data extracted through forensic synoptic analysis (McNally, 1994, 2004) to identify a tropical or subtropical system in the North Atlantic Ocean in 1785. They are shown to be viable sources of meteorological information. By comparing a damaging storm in New England in 1996, which included an offshore tropical system, with one reconstructed in 1785, we demonstrate that the tropical system identified in a ship’s protest played a significant role in the 1785 storm. With both forensic reconstruction and anecdotal evidence, we are able to assess that these storms are remarkably identical. The recurrence rate calculated in previous studies of the 1996 storm is 400–500 years. We suggest that reconstruction of additional years in the 1700s would provide the basis for a reanalysis of recurrence rates, with implications for future insurance and reinsurance rates. The application of the methodology to this new data source can also be used for extension of the hurricane database in the North Atlantic basin, and elsewhere, much further back into history than is currently available.
Resumo:
A 700-year, high-resolution, multivariate ice core record from Dome Summit South (DSS) (66degrees46'S, 112degrees48'E; 1370 m), Law Dome, is used to investigate sea level pressure (SLP) variability in the region of East Antarctica. Empirical orthogonal function (EOF) analysis reveals that the first EOF (LDEOF1) of the combined glaciochemical, oxygen isotope ratio, and accumulation rate record from DSS represents most of the variability in sea salt seen in the record. LDEOF1 is positively correlated (at least 95% confidence level) to instrumental June mean SLP across most of East Antarctica. Over the last 700 years, LDEOF1 levels at Law Dome were the highest during the nineteenth century, suggesting an increase in intensification of winter circulation during this period. The Law Dome DSS oxygen isotope ratio series also indicates that the nineteenth century had the coldest winters of any century in the record. In contrast, LDEOF1 levels were the lowest at Law Dome during the eighteenth century, suggesting a significant shift in the patterns and/or intensity of East Antarctic atmospheric circulation between the eighteenth and the nineteenth centuries. The LDEOF1 sea salt record is characterized by significant decadal-scale variability with a strong 25-year periodic structure.