2 resultados para E01 - Measurement and Data on National Income and Product Accounts and Wealth

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electron and ion microprobe data on two samples of welshite from the type locality of Langban, Sweden, gave analytical totals of 99.38-99.57 wt.% and BeO contents of 4.82-5.11 wt.%, corresponding to 1.692-1.773 Be/20 O. Mossbauer and optical spectra of one of these samples gave Fe-[iv](3+)/Sigma Fe = 0.91, Fe-[iv](2+)/Sigma Fe = 0.09, and no evidence of Mn3+. The resulting formula for this sample is Ca2Mg3.8Mn0.62+Fe0.12+Sb1.55+O2[Si2.8Be1.7Fe0.653+Al0.7As0.17O18], and that for the second sample, Ca2Mg3.8Mn0.12+Fe0.12+F0.83+Sb1.25+O2[Si2.8Be1.8F0.653+Al0.25As0.25O18], is related by the substitution involving tetrahedral and octahedral sites: 0.59([vi,iv])(Fe,Al)(3+) approximate to 0.42([vi])(Mg,Mn,Fe)(2+) + 0.21(Sb-[vi],As-[iv])(5+), i.e. 3([vi,iv]) M3+ = 2([vi])M(2+) + M-[vi,iv](5+). WelShite is distinctive among aenigmatite-group minerals in the high proportion of Fe 3+ in tetrahedral coordination and is unique in its Be content, substantially exceeding 1Be per formula unit. Given the cation distributions in other minerals related to aenigmatite, we think it is reasonable to assume that at least one tetrahedral site is >50% occupied by Be and that one octahedral site is >50% occupied by Sb, so that welshite should be retained as a distinct species with its own name in the aenigmatite group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The radar reflectivity of an ice-sheet bed is a primary measurement for discriminating between thawed and frozen beds. Uncertainty in englacial radar attenuation and its spatial variation introduces corresponding uncertainty in estimates of basal reflectivity. Radar attenuation is proportional to ice conductivity, which depends on the concentrations of acid and sea-salt chloride and the temperature of the ice. We synthesize published conductivity measurements to specify an ice-conductivity model and find that some of the dielectric properties of ice at radar frequencies are not yet well constrained. Using depth profiles of ice-core chemistry and borehole temperature and an average of the experimental values for the dielectric properties, we calculate an attenuation rate profile for Siple Dome, West Antarctica. The depth-averaged modeled attenuation rate at Siple Dome (20.0 +/- 5.7 dB km(-1)) is somewhat lower than the value derived from radar profiles (25.3 +/- 1.1 dB km(-1)). Pending more experimental data on the dielectric properties of ice, we can match the modeled and radar-derived attenuation rates by an adjustment to the value for the pure ice conductivity that is within the range of reported values. Alternatively, using the pure ice dielectric properties derived from the most extensive single data set, the modeled depth-averaged attenuation rate is 24.0 +/- 2.2 dB km(-1). This work shows how to calculate englacial radar attenuation using ice chemistry and temperature data and establishes a basis for mapping spatial variations in radar attenuation across an ice sheet.