2 resultados para Distortional buckling

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the finite-element we have modeled the stress field near the calving face of an idealized tidewater glacier under a variety of assumptions about submarine calving-face height, subaerial calving-face height, and ice rheology These simulations all suggest that a speed maximum should be present at the calving face near the waterline. In experiments without crevassing, the decrease in horizontal velocity above this maximum culminates in a zone of longitudinal compression at the surface somewhat Up-glacier from the face. This zone of compression appears to be a consequence of the non-linear rheology of ice. It disappears when a linear rheology is assumed. Explorations of the near-surface stress field indicate that when pervasive crevassing of the surface ice is accounted for in the simulations (by rheological softening), the zone of compressive strain rates does not develop. Variations in the pattern of horizontal velocity with glacier thickness support the contention that calving rates should increase with water depth at the calving face. In addition, the height of the subaerial calving face may have an importance that is not visible ill Current field data owing to the lack of variation in height of such faces in nature. Glaciers with lower calving faces may not have sufficient tensile stress to calve actively, while tensile stresses in simulated higher faces are sufficiently high that such faces will be unlikely to build in nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Crevasses can be ignored in studying the dynamics of most glaciers because they are only about 20 m deep, a small fraction of ice thickness. In ice shelves, however, s urface crevasses 20 m deep often reach sealevel and bottom crevasses can move upward to sea-level (Clough, 1974; Weertman, 1980). The ice shelf is fractured completely through if surface and basal crevasses meet (Barrett, 1975; Hughes, 1979). This is especially likely if surface melt water fills surface crevasses (Weertman, 1973; Pfeffer, 1982; Fastook and Schmidt, 1982). Fracture may therefore play an important role i n the disintegration of ice shelves. Two fracture criteria which can be evaluated experimentally and applied to ice shelves, are presented. Fracture is then examined for the general strain field of an ice shelf and for local strain fields caused by shear rupture alongside ice streams entering the ice shelf, fatigue rupture along ice shelf grounding lines, and buckling up-stream from ice rises. The effect of these fracture patterns on the stability of Antarctic ice shelves and the West Antarctic ice sheet is then discussed.