4 resultados para Digital elevation model (DEM)

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New ice-velocity measurements are obtained for the main trunk of Byrd Glacier, East Antarctica, using recently acquired Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. The velocities are derived from the application of a cross-correlation technique to sequential images acquired in 2000 and 2001. Images were co-registered and ortho-rectified with the aid of a digital elevation model (DEM) generated from ASTER stereo imagery. This paper outlines the process of DEM generation, image co-registration and correction, and the application of the cross-correlation technique to obtain ice velocities. Comparison of the new velocity map with earlier measurements of velocity from 1978 indicates that the glacier has undergone a substantial deceleration between observations. Portions of the glacier flowing at speeds of similar to 850 m a(-1) in 1978/79 were flowing at similar to 650 m a(-1) in 2000/01. The cause of this change in ice dynamics is not known, but the observation shows that East Antarctic outlet glaciers can undergo substantial changes on relatively short timescales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid unloading of ice from the southeastern sector of the Greenland ice sheet between 2001 and 2006 caused an elastic uplift of similar to 35 mm at a GPS site in Kulusuk. Most of the uplift results from ice dynamic-induced volume losses on two nearby outlet glaciers. Volume loss from Helheim Glacier, calculated from sequential digital elevation models, contributes about similar to 16 mm of the observed uplift, with an additional similar to 5 mm from volume loss of Kangerdlugssuaq Glacier. The remaining uplift signal is attributed to significant melt-induced ice volume loss from the ice sheet margin along the southeast coast between 62 degrees N and 66 degrees N.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The coastal portions of Kangerdlugssuaq and Helheim glaciers in southeast Greenland lost at least 51 +/- 8 km(-3) yr(-1) of ice between 2001-2006 due to thinning and retreat, according to an analysis of sequential digital elevation models (DEMs) derived from stereo ASTER satellite imagery. The dominant contribution to this ice loss was dynamic thinning caused by the acceleration in flow of both glaciers. Peak rates of change, including thinning rates of similar to 90 m yr(-1), coincided with the rapid increases in flow speed. Extrapolation of the measured data to the ice divides yields an estimated combined catchment volume loss of similar to 122 +/- 30 km(-3) yr(-1), which accounts for half the total mass loss from the ice sheet reported in recent studies. These catchment-wide volume losses contributed similar to 0.31 +/- 0.07 mm yr(-1) to global sea level rise over the 5-year observation period with the coastal regions alone contributing at least 0.1 +/- 0.02 mm yr(-1).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assuming a channelized drainage system in steady state, we investigate the influence of enhanced surface melting on the water pressure in subglacial channels, compared to that of changes in conduit geometry, ice rheology and catchment variations. The analysis is carried out for a specific part of the western Greenland ice-sheet margin between 66 degrees N and 66 degrees 30' N using new high-resolution digital elevation models of the subglacial topography and the ice-sheet surface, based on an airborne ice-penetrating radar survey in 2003 and satellite repeat-track interferometric synthetic aperture radar analysis of European Remote-sensing Satellite 1 and 2 (ERS-1/-2) imagery, respectively. The water pressure is calculated up-glacier along a likely subglacial channel at distances of 1, 5 and 9 km from the outlet at the ice margin, using a modified version of Rothlisberger's equation. Our results show that for the margin of the western Greenland ice sheet, the water pressure in subglacial channels is not sensitive to realistic variations in catchment size and mean surface water input compared to small changes in conduit geometry and ice rheology.