2 resultados para Deep-sea Fish
em DigitalCommons - The University of Maine Research
Resumo:
Some aspects of the reproductive biology of the polychaete Gorgoniapolynoe caeciliae have been described for the first time. Gorgoniapolynoe caeciliae is a deep-sea commensal species associated with Candidella imbricala, all octocoral that populates the New England Seamount chain. Gorgoniapolynoe caeciliae is a dioccious species with an equal sex ratio and fertile segments throughout most of the adult body. The gonads of both sexes are associated with genital blood vessels emerging from the posterior surface of most intersegmental septa. In the female, oogenesis is intraovarian with oocytes being retained within the ovary until vitellogenesis is completed. The largest female examined contained over 3000 eggs with a maximum diameter of 80-90 mu m. In the male, the testes are repeated in numerous segments and consist of small clusters of spermatogonia, spermatocytes and early spermatids associated with the walls of the genital blood vessels. Early spermatids are shed into the coelom where they complete differentiation into mature ect-aquasperm with a spherical head (4 mu m), a small cap-like acrosome, and a short mid-piece with four mitochondria. Indirect evidence suggests that this species is an annual breeder that releases its gametes into seawater and produces a planktotrophic larva following fertilization. The reproductive biology of G. caeciliae is consistent with that of most other polynoids including many shallow water species suggesting that phylogenetic history strongly shapes its biology.
Resumo:
Background: Humans have reduced the abundance of many large marine vertebrates, including whales, large fish, and sharks, to only a small percentage of their pre-exploitation levels. Industrial fishing and whaling also tended to preferentially harvest the largest species and largest individuals within a population. We consider the consequences of removing these animals on the ocean's ability to store carbon. Methodology/Principal Findings: Because body size is critical to our arguments, our analysis focuses on populations of baleen whales. Using reconstructions of pre-whaling and modern abundances, we consider the impact of whaling on the amount of carbon stored in living whales and on the amount of carbon exported to the deep sea by sinking whale carcasses. Populations of large baleen whales now store 9.1 x 10(6) tons less carbon than before whaling. Some of the lost storage has been offset by increases in smaller competitors; however, due to the relative metabolic efficiency of larger organisms, a shift toward smaller animals could decrease the total community biomass by 30% or more. Because of their large size and few predators, whales and other large marine vertebrates can efficiently export carbon from the surface waters to the deep sea. We estimate that rebuilding whale populations would remove 1.6 x 10(5) tons of carbon each year through sinking whale carcasses. Conclusions/Significance: Even though fish and whales are only a small portion of the ocean's overall biomass, fishing and whaling have altered the ocean's ability to store and sequester carbon. Although these changes are small relative to the total ocean carbon sink, rebuilding populations of fish and whales would be comparable to other carbon management schemes, including ocean iron fertilization.