2 resultados para Decree law 019 from 2012

em DigitalCommons - The University of Maine Research


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Explosive volcanic eruptions can inject large quantities of sulphur dioxide into the stratosphere. The aerosols that result from oxidation of the sulphur dioxide can produce significant cooling of the troposphere by reflecting or absorbing solar radiation. It is possible to obtain an estimate of the relative stratospheric sulphur aerosol concentration produced by different volcanoes by comparing sulphuric acid fluxes determined by analysis of polar ice cores. Here, we use a non-sea-salt sulphate time series derived from three well-dated Law Dome ice cores to investigate sulphuric acid flux ratios for major eruptions over the period AD 1301-1995. We use additional data from other cores to investigate systematic spatial variability in the ratios. Only for the Kuwae eruption (Law Dome ice date AD 1459.5) was the H2SO4 flux larger than that deposited by Tambora (Law Dome ice date AD 1816.7).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 700-year, high-resolution, multivariate ice core record from Dome Summit South (DSS) (66degrees46'S, 112degrees48'E; 1370 m), Law Dome, is used to investigate sea level pressure (SLP) variability in the region of East Antarctica. Empirical orthogonal function (EOF) analysis reveals that the first EOF (LDEOF1) of the combined glaciochemical, oxygen isotope ratio, and accumulation rate record from DSS represents most of the variability in sea salt seen in the record. LDEOF1 is positively correlated (at least 95% confidence level) to instrumental June mean SLP across most of East Antarctica. Over the last 700 years, LDEOF1 levels at Law Dome were the highest during the nineteenth century, suggesting an increase in intensification of winter circulation during this period. The Law Dome DSS oxygen isotope ratio series also indicates that the nineteenth century had the coldest winters of any century in the record. In contrast, LDEOF1 levels were the lowest at Law Dome during the eighteenth century, suggesting a significant shift in the patterns and/or intensity of East Antarctic atmospheric circulation between the eighteenth and the nineteenth centuries. The LDEOF1 sea salt record is characterized by significant decadal-scale variability with a strong 25-year periodic structure.