2 resultados para Daughters of the American Revolution
em DigitalCommons - The University of Maine Research
Resumo:
Growth histories of yellow-phase American eels Anguilla rostrata collected in four rivers in Maine, were back-calculated from sagittal otolith increments. Our objectives were to first determine whether sexually dimorphic growth rates exist and then compare the growth histories of American eels from four rivers within a geographic region. For female eels, the maximum growth rate was 31.9 +/- 1.7 mm/year at age 8, decreasing to 25.1 +/- 2.9 mm/year at age 14. Males attained a maximum of 29.8 +/- 1.6 min/year at age 3, decreasing to a minimum of 17.9 +/- 1.3 mm/year at age 11. Females grew faster than males after age 4 and had a slower reduction in growth rate with age. These faster growth rates among females were similar in all four rivers. The observed growth rates are not consistent with current life history hypotheses and may indicate an alternative life history strategy. Because female eels benefit from a larger size (i.e., size refuge, increased fecundity, and greater niche breadth), they would benefit from a higher-risk growth strategy that increases growth rate during their earlier years and reduces the amount of time spent in an unfavorable size-class. The tradeoffs (i.e., mortality, developmental rate, pathogen resistance, and longevity) associated with this faster growth rate may not favor the males' life history requirements. Male eels do not achieve the size of females and therefore are not subject to the advantages associated with being larger. Therefore, they may use a risk-averse strategy that maintains submaximum growth rates to obtain the minimum size necessary to mature and complete the spawning migration while reducing the adverse affects of faster growth rates. We postulate that, in eels, intrinsic growth rates should be considered a life history trait that has evolved to meet the life history requirements of each sex.
Resumo:
We have identified benthic recruitment habitats and nursery grounds of the American lobster Homarus americanus Milne Edwards in the coastal Gulf of Maine, USA, by systematically censusing subtidal sediment, cobble, and ledge substrata. We distinguish lobsters between settlement size (5 mm carapace length (CL) to ca 40 mm CL as the 'early benthic phase' (EBP) because they are ecologically and behaviorally distinct from larger lobsters. EBP lobsters are cryptic and apparently restricted to shelter-providing habitats (primarily cobble substratum) in coastal Gulf of Maine. In these habitats we found average population densities of EBP lobsters as high as 6.9 m-2. EBP lobsters were virtually absent from ledge and sedimentary substrata devoid of vegetation although larger lobsters are commonly found there. It is possible that the requirement for shelter-providing substrata by this life phase creates a natural demographic 'bottleneck' to benthic recruitment for the species. Prime cobble recruitment habitat is relatively rare and comprises ca 11 % of the 60.2 km of shoreline at our study area in midcoast Maine. If this low availability of cobble exists throughout the Gulf of Maine, as other studies indicate, it could limit lobster production potential. We verified the geographic extent of recruitment to cobble habitats censused in 3 of 4 regions spanning ca 300 km of the coastal Gulf of Maine (from Nahant, Massachusetts to Swans Island, Maine). Early benthic phase lobsters were absent from cobble censused in the northeastern extreme of our survey (Swans Island). This pattern is consistent with earlier speculation that relatively cool water temperatures may limit larval settlement in this region.