2 resultados para DIN
em DigitalCommons - The University of Maine Research
Resumo:
The distribution of denitrification was investigated in the hypolimnion of the east and west lobes of permanently ice-covered Lake Bonney, Taylor Valley, Antarctica. Anomalously high concentrations of dissolved inorganic nitrogen (DIN; nitrate, nitrite, ammonium and nitrous oxide) in the oxygen-depleted hypolimnion of the east lobe of the Lake implied that denitrification is or was active in the west, but not in the east lobe. While previous investigations reported no detectable denitrification in the east lobe, we measured active denitrification in samples from both the east and west lobes. In the west lobe, measured denitrification rates exhibited a maximum at the depth of the chemocline and denitrification was not detectable in either the oxic surface waters or in the deep water where nitrate was absent. In the east lobe, denitrification was detected below the chemocline, at the depths where ammonium, nitrate, nitrite and nitrous oxide are all present at anomalously high levels, Trace metal availability was manipulated in incubation experiments in order to determine whether trace metal toxicity in the east lobe could explain the difference in nitrogen cycling between the 2 lobes. There were no consistent stimulatory effects of metal chelators or nutrient addition on the rate of denitrification in either lobe, so that the mechanisms underlying the unusual N cycle of the east lobe remain unknown. We conclude that all the ingredients necessary to allow denitrification to occur are present in the east lobe. However, even though denitrification could be detected under certain conditions in incubations, denitrification is inhibited under the in situ conditions of the lake.
Resumo:
The dynamics of phytoplankton and nutrients before, during and after the winter-spring bloom on Georges Bank were studied on 6 monthly survey cruises from January to June 1999. We measured hydrography, phytoplankton cell densities, chlorophyll a, dissolved inorganic nutrients (NO3 + NO2, NH4, Si(OH)(4), PO4), dissolved organic nitrogen (DON) and phosphorus (DOP), particulate organic carbon (POC) and nitrogen (PON) and total particulate phosphorus (TPP). We present evidence that phytoplankton production may be significant year-round, and that the winter-spring bloom may have started in January. From January to April the phytoplankton was comprised almost exclusively of diatoms, reaching cell densities in March and April of ca. 450 cells ml(-1); chlorophyll a concentrations exceeded 10 mug l(-1) in April. Diatoms decreased to relatively low levels in May (< 50 x 10(3) cells l(-1)) and increased again in June (>300 x 10(3) cells l(-1)). Densities of dinoflagellates and nanoflagellates were low (< 10 x 10(3) cells l(-1)) from January to April, and increased in May and June to nearly 300 x 10(3) cells l(-1). Nitrate + nitrite concentrations in January were <3 muM in the shallow, central portion of the bank and decreased steadily each month. Silicate was also <3 muM over an even larger area of the central bank in January and declined to <1.5 muM over most of the Bank in April. The data suggest that silicate depletion, not DIN, contributed to the cessation of the diatom bloom. Regeneration of silicate occurred in May and June, presumably as a result of rising water temperatures in late spring which increased the dissolution rate of diatom frustules from the earlier diatom bloom. Dissolved organic nitrogen may have been utilized at the start of the winter-spring bloom; concentrations were ca, 14 muM in January, dropping to < 6 mug l(-1) in February, after which DON concentrations steadily rose to > 15 mug l(-1) in June. Overall micro-and nanoplankton biomass, measured as POC, PON and TPP, increased over the 6 mo period, as did nutritional quality of that biomass as indicated by declining C:N ratios. Our results suggest there may have been an increase in the heterotrophic component of the plankton in May and June which coincided with a second burst in diatom abundance. We discuss general features of planktonic production and nutrient dynamics with respect to year-round production on the Bank.