4 resultados para Crust of neutron stars

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ar-40/Ar-39 total gas and plateau dates from muscovite and biotite in the southern Black Hills, South Dakota, provide evidence for a period of Middle Proterozoic slow cooling. Early Proterozoic (1600-1650 Ma) mica dates were obtained from metasedimentary rocks located in a synformal structure between the Harney Peak and Bear Mountain domes and also south of Bear Mountain. Metamorphic rocks from the dome areas and undeformed samples of the similar to 1710 Ma Harney Peak Granite (HPG) yield Middle Proterozoic mica dates (similar to 1270-1500 Ma). Two samples collected between the synform and Bear Mountain dome yield intermediate total gas mica dates of similar to 1550 Ma. We suggest two end-member interpretations to explain the map pattern of cooling ages: (1) subhorizontal slow cooling of an area which exhibits variation in mica Ar retention intervals or (2) mild folding of a Middle Proterozoic (similar to 1500 Ma) similar to 300 degrees C isotherm. According to the second interpretation, the preservation of older dates between the domes may reflect reactivation of a preexisting synformal structure (and downwarping of relatively cold rocks) during a period of approximately east-west contraction and slow uplift during the Middle Proterozoic. The mica data, together with hornblende data from the Black Hills published elsewhere, indicate that the ambient country-rock temperature at the 3-4 kbar depth of emplacement of the HPG was between 350 degrees C and 500 degrees C, suggesting that the average upper crustal geothermal gradient was 25 degrees-40 degrees C/km prior to intrusion. The thermochronologic data suggest HPG emplacement was followed by a similar to 200 m.y. period of stability and tectonic quiescence with little uplift. We propose that crust thickened during the Early Proterozoic was uplifted and erosionally(?) thinned prior to similar to 1710 Ma and that the HPG magma was emplaced into isostatically stable crust of relatively normal thickness. We speculate that uplift and crustal thinning prior to HPG intrusion was the result of differential thinning of the subcrustal lithosphere beneath the Black Hills. If so, this process would have also caused an increase in mantle heat flux across the Moho and triggered vapor-absent melting of biotite to produce the HPG magma. This scenario for posttectonic granite generation is supported, in part, by the fact that in the whole of the Black Hills, the HPG is spatially associated with the deepest exposed Early Proterozoic country rock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphological variation within and among many species of algae show correlated life history traits. The trade-offs of Life history traits among different morphs are presumed to be determined by morphology. Form-function hypotheses also predict that algae of different morphological groups exhibit different tolerances to physiological stress, whereas algae within a morphological group respond similarly to stress. We tested this hypothesis by comparing photosynthetic and respiratory responses to variation in season, light, temperature, desiccation and freezing among the morphologically similar fronds of Chondrus crispus and Mastocarpus stellatus and the alternate stage crust of M. stellatus. Physiological differences between fronds of the 2 species and crusts and fronds were consistent with their patterns of distribution and abundance in the intertidal zone. However, there was no clear relationship between algal morphology and physiological response to environmental variation. These results suggest that among macroalgae the correlation between Life history traits and morphology is not always causal. Rather, the link between life history traits and morphology is constrained by the extent to which physiological characteristics codetermine these features.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Parry Sound domain is a granulite nappe-stack transported cratonward during reactivation of the ductile lower and middle crust in the late convergence of the Mesoproterozoic Grenville orogeny. Field observations suggest the following with respect to the ductile sheath: (1) Formation of a carapace of transposed amphibolite facies gneiss derived from and enveloping the western extremity of the Parry Sound domain and separating it from high-strain gneiss of adjacent allochthons. This ductile sheath formed dynamically around the moving granulite nappe through the development of systems of progressively linked shear zones. (2) Transposition initiated by hydration (amphibolization) of granulite facies gneiss by introduction of fluid along cracks accompanying pegmatite emplacement. Shear zones nucleated along pegmatite margins and subsequently linked and rotated. The source of the pegmatites was most likely subjacent migmatitic and pegmatite-rich units or units over which Parry Sound domain was transported. Comparison of gneisses of the ductile sheath with high-strain layered gneiss of adjacent allochthons show the mode of transposition of penetratively layered gneiss depended on whether or not the gneiss protoliths were amphibolite or granulite facies tectonites before initiation of transposition, resulting in, e.g., folding before shearing, no folding before shearing, respectively. Meter-scale truncation along high-strain gradients at the margins of both types of transposition-related shear zones observed within and marginal to Parry Sound domain mimic features at kilometer scales, implying that apparent truncation by transposition originating in a manner similar to the ductile sheath may be a common feature of deep crustal ductile reworking. Citation: Culshaw, N., C. Gerbi, and J. Marsh (2010), Softening the lower crust: Modes of syn-transport transposition around and adjacent to a deep crustal granulite nappe, Parry Sound domain, Grenville Province, Ontario, Canada, Tectonics, 29, TC5013, doi:10.1029/2009TC002537.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In the Mt. Olympos region of northeastern Greece, continental margin strata and basement rocks were subducted and metamorphosed under blueschist facies conditions, and thrust over carbonate platform strata during Alpine orogenesis. Subsequent exposure of the subducted basement rocks by normal faulting has allowed an integrated study of the timing of metamorphism, its relationship to deformation, and the thermal history of the subducted terrane. Alpine low-grade metamorphic assemblages occur at four structural levels. Three thrust sheets composed of Paleozoic granitic basement and Mesozoic metasedimentary cover were thrust over Mesozoic carbonate rocks and Eocene flysch; thrusting and metamorphism occurred first in the highest thrust sheets and progressed downward as units were imbricated from NE to SW. 40Ar/39Ar spectra from hornblende, white mica, and biotite samples indicate that the upper two units preserve evidence of four distinct thermal events: (1) 293–302 Ma crystallization of granites, with cooling from >550°C to <325°C by 284 Ma; (2) 98–100 Ma greenschist to blueschist-greenschist transition facies metamorphism (T∼350–500°C) and imbrication of continental thrust sheets; (3) 53–61 Ma blueschist facies metamorphism and deformation of the basement and continental margin units at T<350–400°C; (4) 36–40 Ma thrusting of blueschists over the carbonate platform, and metamorphism at T∼200–350°C. Only the Eocene and younger events affected the lower two structural packages. A fifth event, indicated by diffusive loss profiles in microcline spectra, reflects the beginning of uplift and cooling to T<100–150°C at 16–23 Ma, associated with normal faulting which continued until Quaternary time. Incomplete resetting of mica ages in all units constrains the temperature of metamorphism during continental subduction to T≤350°C, the closure temperature for Ar in muscovite. The diffusive loss profiles in micas and K-feldspars enable us to “see through” the younger events to older events in the high-T parts of the release spectra. Micas grown during earlier metamorphic events lost relatively small amounts of Ar during subsequent high pressure-low temperature metamorphism. Release spectra from phengites grown during Eocene metamorphism and deformation record the ages of the Ar-loss events. Alpine deformation in northern Greece occurred over a long time span (∼90 Ma), and involved subduction and episodic imbrication of continental basement before, during, and after the collision of the Apulian and Eurasian plates. Syn-subduction uplift and cooling probably combined with intermittently higher cooling rates during extensional events to preserve the blueschist facies mineral assemblages as they were exhumed from depths of >20 km. Extension in the Olympos region was synchronous with extension in the Mesohellenic trough and the Aegean back-arc, and concurrent with westward-progressing shortening in the external Hellenides.