4 resultados para Cracks

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We use a fracture mechanics model to study subcritical propagation and coalescence of single and collinear oil-filled cracks during conversion of kerogen to oil. The subcritical propagation distance, propagation duration, crack coalescence and excess oil pressure in the crack are determined using the fracture mechanics model together with the kinetics of kerogen-oil transformation. The propagation duration for the single crack is governed by the transformation kinetics whereas the propagation duration for the multiple collinear cracks may vary by two orders of magnitude depending on initial crack spacing. A large amount of kerogen (>90%) remains unconverted when the collinear cracks coalesce and the new, larger cracks resulting from coalescence will continue to propagate with continued kerogen-oil conversion. The excess oil pressure on the crack surfaces drops precipitously when the collinear cracks are about to coalesce, and crack propagation duration and oil pressure on the crack surfaces are strongly dependent on temperature. Citation: Jin, Z.-H., S. E. Johnson, and Z. Q. Fan (2010), Subcritical propagation and coalescence of oil-filled cracks: Getting the oil out of low-permeability source rocks, Geophys. Res. Lett., 37, L01305, doi:10.1029/2009GL041576.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Parry Sound domain is a granulite nappe-stack transported cratonward during reactivation of the ductile lower and middle crust in the late convergence of the Mesoproterozoic Grenville orogeny. Field observations suggest the following with respect to the ductile sheath: (1) Formation of a carapace of transposed amphibolite facies gneiss derived from and enveloping the western extremity of the Parry Sound domain and separating it from high-strain gneiss of adjacent allochthons. This ductile sheath formed dynamically around the moving granulite nappe through the development of systems of progressively linked shear zones. (2) Transposition initiated by hydration (amphibolization) of granulite facies gneiss by introduction of fluid along cracks accompanying pegmatite emplacement. Shear zones nucleated along pegmatite margins and subsequently linked and rotated. The source of the pegmatites was most likely subjacent migmatitic and pegmatite-rich units or units over which Parry Sound domain was transported. Comparison of gneisses of the ductile sheath with high-strain layered gneiss of adjacent allochthons show the mode of transposition of penetratively layered gneiss depended on whether or not the gneiss protoliths were amphibolite or granulite facies tectonites before initiation of transposition, resulting in, e.g., folding before shearing, no folding before shearing, respectively. Meter-scale truncation along high-strain gradients at the margins of both types of transposition-related shear zones observed within and marginal to Parry Sound domain mimic features at kilometer scales, implying that apparent truncation by transposition originating in a manner similar to the ductile sheath may be a common feature of deep crustal ductile reworking. Citation: Culshaw, N., C. Gerbi, and J. Marsh (2010), Softening the lower crust: Modes of syn-transport transposition around and adjacent to a deep crustal granulite nappe, Parry Sound domain, Grenville Province, Ontario, Canada, Tectonics, 29, TC5013, doi:10.1029/2009TC002537.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

East Antarctic ice discharged by Byrd Glacier continues as a flowband to the calving front of the Ross Ice Shelf. Flow across the grounding line changes from compressive to extensive as it leaves the fjord through the Transantarctic Mountains occupied by Byrd Glacier. Magnitudes of the longitudinal compressive stress that suppress opening of transverse tensile cracks are calculated for the flowband. As compressive back stresses diminish, initial depths and subsequent growth of these cracks, and their spacing, are calculated using theories of elastic and ductile fracture mechanics. Cracks are initially about one millimeter wide, with approximately 30 in depths and 20 in spacings for a back stress of 83 kPa at a distance of 50 kin beyond the fjord, where floating ice is 600 in thick. When these crevasses penetrate the whole ice thickness, they release tabular icebergs 20 kin to 100 kin wide, spaced parallel to the calving front of the Ross Ice Shelf

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding the behavior of large outlet glaciers draining the Greenland Ice Sheet is critical for assessing the impact of climate change on sea level rise. The flow of marine-terminating outlet glaciers is partly governed by calving-related processes taking place at the terminus but is also influenced by the drainage of surface runoff to the bed through moulins, cracks, and other pathways. To investigate the extent of the latter effect, we develop a distributed surface-energy-balance model for Helheim Glacier, East Greenland, to calculate surface melt and thereby estimate runoff. The model is driven by data from an automatic weather station operated on the glacier during the summers of 2007 and 2008, and calibrated with independent measurements of ablation. Modeled melt varies over the deployment period by as much as 68% relative to the mean, with melt rates approximately 77% higher on the lower reaches of the glacier trunk than on the upper glacier. We compare melt variations during the summer season to estimates of surface velocity derived from global positioning system surveys. Near the front of the glacier, there is a significant correlation (on >95% levels) between variations in runoff (estimated from surface melt) and variations in velocity, with a 1 day delay in velocity relative to melt. Although the velocity changes are small compared to accelerations previously observed following some calving events, our findings suggest that the flow speed of Helheim Glacier is sensitive to changes in runoff. The response is most significant in the heavily crevassed, fast-moving region near the calving front. The delay in the peak of the cross-correlation function implies a transit time of 12-36 h for surface runoff to reach the bed.