2 resultados para Cooperative marketing of farm produce
em DigitalCommons - The University of Maine Research
Resumo:
This thesis tests if certain technology choices are associated with a reduction in the proportion of farming activities in the agro-food system in Maine. Goodman, Sorj, and Wilkinson define appropriationism as the replacement of farming sector activities by industrial inputs. Based on the concept of appropriationism, industrial fanning systems using large amounts of synthetic inputs contribute less to fanning than more agrarian systems, like organic fanning. Thus, returns to the farming sector should be greater for organic compared with conventional potato fanning in Maine since organic farming uses fewer industrial inputs. Goodman et. al. define substitutionism as the displacement of farming sector commodities and activities by industrial processes in the marketing sector. Based on the concept of substitutionism, returns to the farming sector should be greater for Lay's Classic®™ potato chips made from natural potatoes compared with Baked Lay's®™ potato crisps manufactured from processed dehydrated potatoes. Returns to the farming sector are defined as returns to the farmer or farm family from farming activities, returns to farm labor, and returns to farmers and farm labor producing inputs used on the farm. Results show absolute returns to the farming sector are less for organic compared to conventional tablestock potato farms in Maine. However as a proportion of farm revenues, large organic farms that market at least 25% of their produce to retail stores or directly to consumers do as well as conventional farms. When comparing returns as a proportion of consumer expenditures, these organic farms do better than conventional farms. Returns to the farming sector are less for organic because of yield penalties, cost of marketing services, and diseconomies of size for organic tablestock potato farms. Expanding acreage and reintegrating livestock with cropping systems may increase returns to the fanning sector. Organic farming demonstrates difficulties in providing marketing services at the farm level. Providing marketing services limits the ability to expand production to capture economies of size. Maine organic potato farmers emphasize non-monetary values such as supporting sustainable agriculture, self-sufficiency, the intrinsic value of work, and close community and family connections. Returns to the farming sector as a proportion of consumer expenditures are about three times greater for Lay's Classic®™ potato chips than for Baked Lay's®™ potato crisps, since the value that farmers receive for potatoes used to produce dehydrated potato flakes in one pound of crisps is about half of the value that farmers receive for potatoes used to make one pound of chips. However, this assumes farmers assign a cost to producing low-grade potatoes for dehydration proportionate to their value. Premium potatoes are used to produce potato chips. Low-grade potatoes are used to produce the dehydrated potato flakes used to make potato crisps. Returns to the farming sector are slightly greater for potato crisps if no costs are allocated to producing low-grade potatoes for dehydration. A shift in consumer preferences from potato chips to crisps may result in a geographical shift of potato production from Maine to the Pacific Northwest assuming no food-grade dehydration facilities are built in Maine.
Resumo:
Regional climate simulations are conducted using the Polar fifth-generation Pennsylvania State University (PSU)-NCAR Mesoscale Model (MM5) with a 60-km horizontal resolution domain over North America to explore the summer climate of the Last Glacial Maximum (LGM: 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. The simulated LGM summer climate is characterized by a pronounced low-level thermal gradient along the southern margin of the LIS resulting from the juxtaposition of the cold ice sheet and adjacent warm ice-free land surface. This sharp thermal gradient anchors the midtropospheric jet stream and facilitates the development of synoptic cyclones that track over the ice sheet, some of which produce copious liquid precipitation along and south of the LIS terminus. Precipitation on the southern margin is orographically enhanced as moist southerly low-level flow (resembling a contemporary, Great Plains low-level jet configuration) in advance of the cyclone is drawn up the ice sheet slope. Composites of wet and dry periods on the LIS southern margin illustrate two distinctly different atmospheric flow regimes. Given the episodic nature of the summer rain events, it may be possible to reconcile the model depiction of wet conditions on the LIS southern margin during the LGM summer with the widely accepted interpretation of aridity across the Great Plains based on geological proxy evidence.