1 resultado para Cobalt aluminate. Curing method of complex (CPM). Inorganic pigments. Fractional factorial planning
em DigitalCommons - The University of Maine Research
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Aquatic Commons (12)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archive of European Integration (17)
- Aston University Research Archive (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (14)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (14)
- Biodiversity Heritage Library, United States (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (32)
- Boston University Digital Common (1)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (2)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (86)
- CentAUR: Central Archive University of Reading - UK (58)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (77)
- Cochin University of Science & Technology (CUSAT), India (13)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (3)
- Digital Peer Publishing (3)
- Digital Repository at Iowa State University (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (5)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (2)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (4)
- Indian Institute of Science - Bangalore - Índia (74)
- Instituto Politécnico do Porto, Portugal (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (12)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (10)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (98)
- Queensland University of Technology - ePrints Archive (85)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (37)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (6)
- Universidad Autónoma de Nuevo León, Mexico (3)
- Universidad de Alicante (10)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (20)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Montréal, Canada (6)
- University of Connecticut - USA (1)
- University of Michigan (162)
- University of Queensland eSpace - Australia (2)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Relevância:
Resumo:
An easily implemented extension of the standard response method of tidal analysis is outlined. The modification improves the extraction of both the steady and the tidal components from problematic time series by calculating tidal response weights uncontaminated by missing or anomalous data. Examples of time series containing data gaps and anomalous events are analyzed to demonstrate the applicability and advantage of the proposed method.