3 resultados para Chemical quality
em DigitalCommons - The University of Maine Research
Resumo:
I solved equations that describe coupled hydrolysis in and absorption from a continuously stirred tank reactor (CSTR), a plug flow reactor (PFR), and a batch reactor (BR) for the rate of ingestion and/or the throughput time that maximizes the rate of absorption (=gross rate of gain from digestion). Predictions are that foods requiring a single hydrolytic step (e.g., disaccharides) yield ingestion rates that vary inversely with the concentration of food substrate ingested, whereas foods that require multiple hydrolytic and absorptive reactions proceeding in parallel (e.g., proteins) yield maximal ingestion rates at intermediate substrate concentrations. Counterintuitively, then, animals acting to maximize their absorption rates should show compensatory ingestion (more rapid feeding on food of lower concentration), except for the lower range of diet quality fur complex diets and except for animals that show purely linear (passive) uptake. At their respective maxima in absorption rates, the PFR and BR yield only modestly higher rates of gain than the CSTR but do so at substantially lower rates of ingestion. All three ideal reactors show milder than linear reduction in rate of absorption when throughput or holding time in the gut is increased (e.g., by scarcity or predation hazard); higher efficiency of hydrolysis and extraction offset lower intake. Hence adding feeding costs and hazards of predation is likely to slow ingestion rates and raise absorption efficiencies substantially over the cost-free optima found here.
Animal Guts as Nonideal Chemical Reactors: Partial Mixing and Axial Variation in Absorption Kinetics
Resumo:
Animal guts have been idealized as axially uniform plug-flow reactors (PFRs) without significant axial mixing or as combinations in series of such PFRs with other reactor types. To relax these often unrealistic assumptions and to provide a means for relaxing others, I approximated an animal gut as a series of n continuously stirred tank reactors (CSTRs) and examined its performance as a Function of n. For the digestion problem of hydrolysis and absorption in series, I suggest as a first approximation that a tubular gut of length L and diameter D comprises n=L/D tanks in series. For n greater than or equal to 10, there is little difference between performance of the nCSTR model and an ideal PFR in the coupled tasks of hydrolysis and absorption. Relatively thinner and longer guts, characteristic of animals feeding on poorer forage, prove more efficient in both conversion and absorption by restricting axial mixing, in the same total volume, they also give a higher rate of absorption. I then asked how a fixed number of absorptive sites should be distributed among the n compartments. Absorption rate generally is maximized when absorbers are concentrated in the hindmost few compartments, but high food quality or suboptimal ingestion rates decrease the advantage of highly concentrated absorbers. This modeling approach connects gut function and structure at multiple scales and can be extended to include other nonideal reactor behaviors observed in real animals.
Resumo:
This work is aimed at improving our current knowledge of the non-enzymatic inecl~anisins involved in brown-rot decay, as well as the exploration of potential applications of a brown-rot mimetic model system in paper recycling processes. The study was divided into two parts. The first part focussed on the chemical mechanisms involved in chelation and reduction of iron by a low molecular weight chelator (isolated from the brown-rot fungus Gloeophyllz~m tmbeum) and its model compound 2,3- dihydroxybenzoic acid (2,3-DHBA). Chelation as well as free radical generation mediated by this system were studied by ESR measurement. The results indicate that the effects of the chelator/iron ratio, the pH, and other reaction parameters on hydroxyl radical generation by a Fenton type system could be determined using ESR spin-trapping techniques. The results also support the hypothesis that superoxide radicals are involved in the chelator-mediated Fenton process. In the second part of the study, the effect of a chelator-mediated Fenton system for the improvement of deinking efficiency and the n~odification of fiber and paper properties was studied. For the deinking study, copy paper was laser printed with an identical standard pattern. Then repulping and flotation operations were performed to remove ink particles. Under properly controlled deinking conditions, the chelator mediated treatment (CMT) resulted in a reduction in dirt count over that of conventional deinking procedures with no significant loss of pulp strength. To study the effect of the chelator system treatment on the quality of pulp with different fines content, a fully bleached hardwood kraft pulp was beaten to different freeness levels and treated with the chelator-mediated free radical system. The result shows that virgin fiber and heavily beaten fiber respond differently to the free radical treatment. Unbeaten fibers become more flexible and easier to collapse after free radical treatment, while beaten fibers show a reduction in fines and small materials after mild free radical treatment.