3 resultados para CO 2 adsorption

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One common assumption in interpreting ice-core CO(2) records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO(2) diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO(2) associated with refrozen layers in an ice core from Siple Dome, Antarctica, to study CO(2) diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical conductivity and Ca(2+) ion concentrations to show that substantial CO(2) diffusion may occur in ice on timescales of thousands of years. We estimate the permeation coefficient for CO(2) in ice is similar to 4 x 10(-21) mol m(-1) s(-1) Pa(-1) at -23 degrees C in the top 287 m (corresponding to 2.74 kyr). Smoothing of the CO(2) record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the firn. However, simulations for depths of similar to 930-950m (similar to 60-70 kyr) indicate that smoothing of the CO(2) record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The causes of the glacial cycle remain unknown, although the primary driver is changes in atmospheric CO(2), likely controlled by the biological pump and biogeochemical cycles. The two most important regions of the ocean for exchange of CO(2) with the atmosphere are the equatorial Pacific and the Southern Ocean ( SO), the former a net source and the latter a net sink under present conditions. The equatorial Pacific has been shown to be a Si(OH)(4)-limited ecosystem, a consequence of the low source Si(OH)(4) concentrations in upwelled water that has its origin in the SO. This teleconnection for nutrients between the two regions suggests an oscillatory relationship that may influence or control glacial cycles. Opal mass accumulation rate (MAR) data and delta(15)N measurements in equatorial cores are interpreted with predictions from a one- dimensional Si(OH)(4)-limited ecosystem model (CoSINE) for the equatorial Pacific. The results suggest that equatorial Pacific surface CO(2) processes are in opposite phase to that of the global atmosphere, providing a negative feedback to the glacial cycle. This negative feedback is implemented through the effect of the SO on the equatorial Si(OH)(4) supply. An alternative hypothesis, that the whole ocean becomes Si(OH)(4) poor during cooling periods, is suggested by low opal MAR in cores from both equatorial and Antarctic regions, perhaps as a result of low river input. terminations in this scenario would result from blooms of coccolithophorids triggered by low Si(OH)(4) concentrations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Surface nutrients and dissolved inorganic carbon (DIC) in the central (CEP) and eastern equatorial Pacific (EEP) show much higher concentrations to the south than to the north of the equator. In this study, the physical and biological controls on this asymmetry are investigated using a coupled physical-biogeochemical model. Two numerical experiments are conducted to examine the effects of asymmetrical photosynthetic efficiency (a) due to asymmetrical iron supply about the equator. The experiment with asymmetrical photosynthesis produces improved results as compared with historical observations. A nitrate budget analysis suggests that in the EEP the divergence of upwelling waters controls the surface nitrate asymmetry with additional contribution from the South Equatorial Current (SEC) carrying nutrient-rich Peru upwelling water. The changes of a affect the surface nitrate distribution but not the overall asymmetry. The SEC further carries excess nitrate to the west and thus extends the asymmetry in the east to the CEP. In the CEP, however, stronger northward than southward transport tends to reduce the nitrate asymmetry, while the asymmetrical photosynthesis would help to maintain it. Similar processes also control the distributions of surface silicate and DIC in the equatorial Pacific, which is also affected by the air-sea CO(2) exchange. The asymmetrical photosynthesis influences the distribution of surface DIC, pCO(2), and the air-sea CO(2) flux, by redistributing about 20% CO(2) flux from the north to the south of the equator. Owing to the adjustment of air-sea CO(2) flux, however, the net surface DIC change is smaller than the direct change associated with primary production.