7 resultados para CENTRAL CORE DISEASE
em DigitalCommons - The University of Maine Research
Resumo:
Stable water isotope (delta(18)O, deltaD) data from a high elevation (5100 masl) ice core recovered from the Tien Shan Mountains, Kyrgyzstan, display a seasonal cycle in deuterium excess (d = deltaD - 8* delta(18)O) related to changes in the regional hydrologic cycle during 1994 - 2000. While there is a strong correlation (r(2) = 0.98) between delta(18)O and dD in the ice core samples, the regression slope (6.9) and mean d value (23.0) are significantly different than the global meteoric water line values. The resulting time-series ice core d profile contains distinct winter maxima and summer minima, with a yearly d amplitude of similar to 15 - 20parts per thousand. Local-scale processes that may affect d values preserved in the ice core are not consistent with the observed seasonal variability. Data from Central Asian monitoring sites in the Global Network of Isotopes in Precipitation (GNIP) have similar seasonal d changes. We suggest that regional-scale hydrological conditions, including seasonal changes in moisture source, transport, and recycling in the Caspian/ Aral Sea region, are responsible for the observed spatial and temporal d variability.
Resumo:
Oxygen isotopic and soluble ionic measurements made on snow-pit (2 in depth) and firn-core (12.4 m depth samples recovered from the accumulation zone 5100 m) of Inilchek glacier 43degrees N, 79degrees E) provide information on recent (1992-98) climatic and environmental conditions in the central Tien Shan region of central Asia. The combined 14.4 m snow-pit/firn-core profile lies within the firn zone, arid contains only one observed melt feature (10 m temperature = - 12 degreesC), Although some post-depositional attenuation of the sub-seasonal delta(18)O record is possible, annual cycles are apparent throughout the isotope profile. We therefore use the preserved delta(18)O record to establish a depth/age scale for the core. Mean delta(18)O values for the entire core and for summer periods are consistent with delta(18)O/temperature observations, and suggest the delta(18)O record provides a means to reconstruct past changes in summer surface temperature at the site. Major-ion (Na(+), K(+), Mg(2+), Ca(2+), NH(4)(+), Cl(-), NO(3)(-), SO(4)(2-)) data from the core demonstrate the dominant influence of dust deposition on the soluble chemistry at the site, arid indicate significant interannual variability in atmospheric-dust loading during the 1900s. Anthropogenic impacts oil NH(4)(+) concentrations are observed at the site, and suggest a summer increase in atmospheric NH(4)(+) that may be related to regional agricultural (nitrogen-rich fertilizer use activities.
Resumo:
Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100 - 5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the delta(18)O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the arid and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas.
Resumo:
In autumn 2005, a joint expedition between the University of Maine and the Institute of Tibetan Plateau Research recovered three ice cores from Guoqu Glacier (33 degrees 34'37.80 '' N, 91 degrees 10'35.3 '' E, 5720 m above sea level) on the northern side of Mt. Geladaindong, central Tibetan Plateau. Isotopes ( delta(18)O), major soluble ions (Na(+), K(+), Mg(2+), Ca(2+), Cl(-), NO(3)(-), SO(4)(2-)), and radionuclide (beta-activity) measurements from one of the cores revealed a 70-year record (1935-2005). Statistical analysis of major ion time series suggests that atmospheric soluble dust species dominate the chemical signature and that background dust levels conceal marine ion species deposition. The soluble dust time series have interspecies relations and common structure (empirical orthogonal function (EOF) 1), suggesting a similar soluble dust source or transport route. Annual and seasonal correlations between the EOF 1 time series and National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis climate variables (1948-2004) suggest that the Mt. Geladaindong ice core record provides a proxy for local and regional surface pressure. An approximately threefold decrease of soluble dust concentrations in the middle to late 1970s, accompanied by regional increases in pressure and temperature and decreases in wind velocity, coincides with the major 1976-1977 shift of the Pacific Decadal Oscillation (PDO) from a negative to a positive state. This is the first ice core evidence of a potential teleconnection between central Asian atmospheric soluble dust loading and the PDO. Analysis of temporally longer ice cores from Mt. Geladaindong may enhance understanding of the relationship between the PDO and central Asian atmospheric circulation and subsequent atmospheric soluble dust loading.
Resumo:
High-resolution chemical records from an 80.4 m ice core from the central Himalaya demonstrate climatic and environmental changes since 1844. The chronological net accumulation series shows a sharp decrease from the mid-1950s, which is coincident with the widely observed glacier retreat. A negative correlation is found between the ice-core delta(18)O record and the monsoon precipitation for Indian region 7. The temporal variation of the terrestrial ions (Ca2+ and Mg2+) is controlled by both the monsoon precipitation for Indian regions 3,7 and 8, located directly south and west of the Himalaya, and the dust-storm duration and frequency in the northern arid regions, such as the Taklimakan desert, China. The NH4+ profile is fairly flat until the 1940s, then substantially increases until the end of the 1980s, with a slight decrease during the 1990s which may reflect new agricultural practices. The SO42- and NO3- profiles show an apparent increasing trend, especially during the period 1940s-80s. Moreover, SO42- concentrations for the East Rongbuk Glacier core are roughly double that of the nearby Dasuopu core at Xixabangma, Himalaya, due to local human activity including that of climbing teams who use gasoline for cooking, energy and transport.
Resumo:
Measurements of delta(34)S covering the years 1935-76 and including the 1963 Agung (Indonesia) eruption were made on a West Antarctic firn core, RIDSA (78.73 degrees S, 116.33 degrees W; 1740m a.s.l.), and results are used to unravel potential source functions in the sulfur cycle over West Antarctica. The delta(34)S values Of SO42- range from 3.1 parts per thousand to 9.9 parts per thousand. These values are lower than those reported for central Antarctica, from near South Pole station, of 9.3-18.1 parts per thousand (Patris and others, 2000). While the Agung period is isotopically distinct at South Pole, it is not in the RIDSA dataset, suggesting differences in the source associations for the sulfur cycle between these two regions. Given the relatively large input of marine aerosols at RIDSA (determined from Na+ data and the seasonal SO42- cycle), there is likely a large marine biogenic SO42- influence. The delta(34)S values indicate, however, that this marine biogenic SO42-, with a well-established delta(34)S of 18 parts per thousand, is mixing with SO42- that has extremely negative delta(34)S values to produce the measured isotope values in the RIDSA core. We suggest that the transport and deposition of stratospheric SO42- in West Antarctica, combined with local volcanic input, accounts for the observed variance in delta(34)S values.