37 resultados para Byrd ice core

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Holocene portion of the Siple Dome (Antarctica) ice core was dated by interpreting the electrical, visual and chemical properties of the core. The data were interpreted manually and with a computer algorithm. The algorithm interpretation was adjusted to be consistent with atmospheric methane stratigraphic ties to the GISP2 (Greenland Ice Sheet Project 2) ice core, (BE)-B-10 stratigraphic ties to the dendrochronology C-14 record and the dated volcanic stratigraphy. The algorithm interpretation is more consistent and better quantified than the tedious and subjective manual interpretation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One common assumption in interpreting ice-core CO(2) records is that diffusion in the ice does not affect the concentration profile. However, this assumption remains untested because the extremely small CO(2) diffusion coefficient in ice has not been accurately determined in the laboratory. In this study we take advantage of high levels of CO(2) associated with refrozen layers in an ice core from Siple Dome, Antarctica, to study CO(2) diffusion rates. We use noble gases (Xe/Ar and Kr/Ar), electrical conductivity and Ca(2+) ion concentrations to show that substantial CO(2) diffusion may occur in ice on timescales of thousands of years. We estimate the permeation coefficient for CO(2) in ice is similar to 4 x 10(-21) mol m(-1) s(-1) Pa(-1) at -23 degrees C in the top 287 m (corresponding to 2.74 kyr). Smoothing of the CO(2) record by diffusion at this depth/age is one or two orders of magnitude smaller than the smoothing in the firn. However, simulations for depths of similar to 930-950m (similar to 60-70 kyr) indicate that smoothing of the CO(2) record by diffusion in deep ice is comparable to smoothing in the firn. Other types of diffusion (e.g. via liquid in ice grain boundaries or veins) may also be important but their influence has not been quantified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stable water isotope (delta(18)O, deltaD) data from a high elevation (5100 masl) ice core recovered from the Tien Shan Mountains, Kyrgyzstan, display a seasonal cycle in deuterium excess (d = deltaD - 8* delta(18)O) related to changes in the regional hydrologic cycle during 1994 - 2000. While there is a strong correlation (r(2) = 0.98) between delta(18)O and dD in the ice core samples, the regression slope (6.9) and mean d value (23.0) are significantly different than the global meteoric water line values. The resulting time-series ice core d profile contains distinct winter maxima and summer minima, with a yearly d amplitude of similar to 15 - 20parts per thousand. Local-scale processes that may affect d values preserved in the ice core are not consistent with the observed seasonal variability. Data from Central Asian monitoring sites in the Global Network of Isotopes in Precipitation (GNIP) have similar seasonal d changes. We suggest that regional-scale hydrological conditions, including seasonal changes in moisture source, transport, and recycling in the Caspian/ Aral Sea region, are responsible for the observed spatial and temporal d variability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Air mass trajectories in the Southern Hemisphere provide a mechanism for transport to and deposition of volcanic products on the Antarctic ice sheet from local volcanoes and from tropical and subtropical volcanic centers. This study extends the detailed record of Antarctic, South American, and equatorial volcanism over the last 12,000 years using continuous glaciochemical series developed from the Siple Dome A (SDMA) ice core, West Antarctica. The largest volcanic sulfate spike ( 280 mu g/L) occurs at 5881 B. C. E. Other large signals with unknown sources are observed around 325 B. C. E. ( 270 mu g/L) and 2818 B. C. E. ( 191 mu g/L). Ages of several large equatorial or Southern Hemisphere volcanic eruptions are synchronous with many sulfate peaks detected in the SDMA volcanic ice chemistry record. The microprobe "fingerprinting'' of glass shards in the SDMA core points to the following Antarctic volcanic centers as sources of tephra found in the SDMA core: Balenny Island, Pleiades, Mount Berlin, Mount Takahe, and Mount Melbourne as well as Mount Hudson and possibly Mount Burney volcanoes of South America. Identified volcanic sources provide an insight into the poorly resolved transport history of volcanic products from source volcanoes to the West Antarctic ice sheet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Mt. Everest ice core spanning 1860-2000 AD and analyzed at high resolution for black carbon (BC) using a Single Particle Soot Photometer (SP2) demonstrates strong seasonality, with peak concentrations during the winter-spring, and low concentrations during the summer monsoon season. BC concentrations from 1975-2000 relative to 1860-1975 have increased approximately threefold, indicating that BC from anthropogenic sources is being transported to high elevation regions of the Himalaya. The timing of the increase in BC is consistent with BC emission inventory data from South Asia and the Middle East, however since 1990 the ice core BC record does not indicate continually increasing BC concentrations. The Everest BC and dust records provide information about absorbing impurities that can contribute to glacier melt by reducing the albedo of snow and ice. There is no increasing trend in dust concentrations since 1860, and estimated surface radiative forcing due to BC in snow exceeds that of dust in snow. This suggests that a reduction in BC emissions may be an effective means to reduce the effect of absorbing impurities on snow albedo and melt, which affects Himalayan glaciers and the availability of water resources in major Asian rivers. Citation: Kaspari, S. D., M. Schwikowski, M. Gysel, M. G. Flanner, S. Kang, S. Hou, and P. A. Mayewski (2011), Recent increase in black carbon concentrations from a Mt. Everest ice core spanning 1860-2000 AD, Geophys. Res. Lett., 38, L04703, doi: 10.1029/2010GL046096.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-resolution major and trace elements (Sr, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, U, Tl, Al, S, Ca, Ti, V, Cr, Mn, Fe, and Co) quantified in a Mount Everest ice core ( 6518 m above sea level) spanning the period 1650-2002 AD provides the first Asian record of trace element concentrations from the pre-industrial era, and the first continuous high-resolution Asian record from which natural baseline concentrations and subsequent changes due to anthropogenic activities can be examined. Modern concentrations of most elements remain within the pre-industrial range; however, Bi, U, and Cs concentrations and their enrichment factors (EF) have increased since the similar to 1950s, and S and Ca concentrations and their EFs have increased since the late 1980s. A comparison of the Bi, U, Cs, S, and Ca data with other ice core records and production data indicates that the increase in atmospheric concentrations of trace elements is widespread, but that enrichment varies regionally. Likely sources for the recent enrichment of these elements include mining, metal smelting, oil and coal combustion, and end uses for Bi, and mining and refinement for U and Cs. The source of the synchronous enrichment of Ca and S is less certain, but may be related to land use and environmental change.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snow-accumulation rates are known to be sensitive to local changes in ice-sheet surface slope because of the effect of katabatic winds. These topographic effects can be preserved in ice cores that are collected at non-ice-divide locations. The trajectory of an ice-core site at South Pole is reconstructed using measurements of ice-sheet motion to show that snow was probably deposited at places of different surface slope during the past 1000 years. Recent accumulation rates, derived from shallow firn cores, vary along this trajectory according to surface topography, so that on a relatively steep flank mean annual accumulation is similar to 18% smaller than on a nearby topographic depression. These modern accumulation rates are used to reinterpret the cause of accumulation rate variability with time in the long ice-core record as an ice-dynamics effect and not a climate-change signal. The results highlight the importance of conducting ancillary ice-dynamics measurements as part of ice-coring programs so that topographic effects can be deconvolved from potential climate signals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution, 8000 year-long ice core record from the Mt. Logan summit plateau (5300 m asl) reveals the initiation of trans-Pacific lead (Pb) pollution by ca. 1730, and a > 10-fold increase in Pb concentration (1981-1998 mean = 68.9 ng/l) above natural background (5.6 ng/l) attributed to rising anthropogenic Pb emissions from Asia. The largest rise in North Pacific Pb pollution from 1970-1998 (end of record) is contemporaneous with a decrease in Eurasian and North American Pb pollution as documented in ice core records from Greenland, Devon Island, and the European Alps. The distinct Pb pollution history in the North Pacific is interpreted to result from the later industrialization and less stringent abatement measures in Asia compared to North America and Eurasia. The Mt. Logan record shows evidence for both a rising Pb emissions signal from Asia and a trans-Pacific transport efficiency signal related to the strength of the Aleutian Low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Mount Everest ice core analyzed at high resolution for major and trace elements (Sr, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Lu, Bi, U, Tl, Al, S, Ca, Ti, V, Cr, Mn, Fe, Co) and spanning the period A. D. 1650- 2002 is used to investigate the sources of and variations in atmospheric dust through time. The chemical composition of dust varies seasonally, and peak dust concentrations occur during the winter-spring months. Significant correlations between the Everest dust record and dust observations at stations suggest that the Everest record is representative of regional variations in atmospheric dust loading. Back-trajectory analysis in addition to a significant correlation of Everest dust concentrations and the Total Ozone Mapping Spectrometer (TOMS) aerosol index indicates that the dominant winter sources of dust are the Arabian Peninsula, Thar Desert, and northern Sahara. Factors that contribute to dust generation at the surface include soil moisture and temperature, and the long-range transport of dust aerosols appears to be sensitive to the strength of 500-mb zonal winds. There are periods of high dust concentration throughout the 350-yr Mount Everest dust record; however, there is an increase in these periods since the early 1800s. The record was examined for recent increases in dust emissions associated with anthropogenic activities, but no recent dust variations can be conclusively attributed to anthropogenic inputs of dust.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An NH4+ record covering the period A.D. 1845-1997 was reconstructed using an 80.4 m ice core from East Rongbuk Glacier at an elevation of 6450 m on the northern slope of Mount Everest. Variations in NH4+ are characterized by a dramatic increase since the 1950s. The highest NH4+ concentrations occur in the 1980s. They are about twofold more than those in the first half of twentieth century. Empirical orthogonal function (EOF) analysis on the eight major ion (Na+,K+,Mg2+,NH4+,Ca2+,NO3-,SO42- and Cl-) series from this core indicates that NH4+ is loaded mainly on EOF3 (60% of NH4+ variance), suggesting that NH4+ has a unique signature. Instrumental sea level pressure (SLP) and regional temperatures are used to explore the relationship between NH4+ variations and both atmospheric circulation and natural source strength over Asia. Higher NH4+ concentrations are associated with an enhanced winter Mongolian High and a deepened summer Mongolian Low. A positive relationship also exists between NH4+ concentrations and regional temperature changes of the GIS Box 36 (Indian subcontinent), indicating that an increase in temperature may contribute to the strengthening of natural ammonia emissions (e. g., from plants and soils). A close positive correlation between NH4+ and acidic species (SO42- plus NO3-) concentrations suggests that a portion of the increase in NH4+ concentrations could be contributed by enhanced atmospheric acidification. Anthropogenic ammonia emissions from enhanced agricultural activities and energy consumption over Asia in concert with population increase since the 1950s appear also to be a significant factor in the dramatic increase of NH4+ concentrations during the last few decades.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using US National Centers for Environmental Prediction/US National Center for Atmospheric Research re-analysis data, we investigate the relationships between crustal ion (nssCa(2+)) concentrations from three West Antarctic ice cores, namely, Siple Dome (SD), ITASE00-1 (IT001) and ITASE01-5 (IT015), and primary components of the climate system, namely, air pressure/geopotential height, zonal (u) and meridional (v) wind strength. Linear correlation analyses between nssCa(2+) concentrations and both air-pressure and wind fields for the period of overlap between records indicate that the SD nssCa(2+) variation is positively correlated with spring circumpolar zonal wind, while IT001 nssCa(2+) has a positive correlation with circumpolar zonal wind throughout the year (r > 0.3, p < 0.01). Intensified Southern Westerlies circulation is conducive to transport of more crustal aerosols to both sites. Further correlation analyses between nssCa(2+) concentrations from SD and IT001 and atmospheric circulation suggest that the high inland plateau (represented by core IT001) is largely influenced by transport from the upper troposphere. IT015 nssCa(2+) is negatively correlated with westerly wind in October and November, suggesting that stronger westerly circulation may weaken the transport of crustal species to IT015. Correlations of nssCa(2+) from the three ice cores with the Antarctic Oscillation index are consistent with results developed from the wind-field investigation. In addition, calibration between nssCa(2+) concentration and the multivariate El Nino-Southern Oscillation (ENSO) index shows that crustal species transport to IT001 is enhanced during strong ENSO events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In autumn 2005, a joint expedition between the University of Maine and the Institute of Tibetan Plateau Research recovered three ice cores from Guoqu Glacier (33 degrees 34'37.80 '' N, 91 degrees 10'35.3 '' E, 5720 m above sea level) on the northern side of Mt. Geladaindong, central Tibetan Plateau. Isotopes ( delta(18)O), major soluble ions (Na(+), K(+), Mg(2+), Ca(2+), Cl(-), NO(3)(-), SO(4)(2-)), and radionuclide (beta-activity) measurements from one of the cores revealed a 70-year record (1935-2005). Statistical analysis of major ion time series suggests that atmospheric soluble dust species dominate the chemical signature and that background dust levels conceal marine ion species deposition. The soluble dust time series have interspecies relations and common structure (empirical orthogonal function (EOF) 1), suggesting a similar soluble dust source or transport route. Annual and seasonal correlations between the EOF 1 time series and National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis climate variables (1948-2004) suggest that the Mt. Geladaindong ice core record provides a proxy for local and regional surface pressure. An approximately threefold decrease of soluble dust concentrations in the middle to late 1970s, accompanied by regional increases in pressure and temperature and decreases in wind velocity, coincides with the major 1976-1977 shift of the Pacific Decadal Oscillation (PDO) from a negative to a positive state. This is the first ice core evidence of a potential teleconnection between central Asian atmospheric soluble dust loading and the PDO. Analysis of temporally longer ice cores from Mt. Geladaindong may enhance understanding of the relationship between the PDO and central Asian atmospheric circulation and subsequent atmospheric soluble dust loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100 - 5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the delta(18)O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the arid and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have measured the CO2 concentration of air occluded during the last 40,000 years in the deep Siple Dome A ( hereafter Siple Dome) ice core, Antarctica. The general trend of CO2 concentration from Siple Dome ice follows the temperature inferred from the isotopic composition of the ice and is mostly in agreement with other Antarctic ice core CO2 records. CO2 rose initially at similar to 17.5 kyr B. P. ( thousand years before 1950), decreased slowly during the Antarctic Cold Reversal, rose during the Younger Dryas, fell to a local minimum at around 8 kyr B. P., and rose continuously since then. The CO2 concentration never reached steady state during the Holocene, as also found in the Taylor Dome and EPICA Dome C ( hereafter Dome C) records. During the last glacial termination, a lag of CO2 versus Siple Dome isotopic temperature is probable. The Siple Dome CO2 concentrations during the last glacial termination and in the Holocene are at certain times greater than in other Antarctic ice cores by up to 20 ppm (mumol CO2/mol air). While in situ production of CO2 is one possible cause of the sporadic elevated levels, the mechanism leading to the enrichment is not yet clear.