2 resultados para Branch, James Orson

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optimized regional climate simulations are conducted using the Polar MM5, a version of the fifth-generation Pennsylvania State University-NCAR Mesoscale Model (MM5), with a 60-km horizontal resolution domain over North America during the Last Glacial Maximum (LGM, 21 000 calendar years ago), when much of the continent was covered by the Laurentide Ice Sheet (LIS). The objective is to describe the LGM annual cycle at high spatial resolution with an emphasis on the winter atmospheric circulation. Output from a tailored NCAR Community Climate Model version 3 (CCM3) simulation of the LGM climate is used to provide the initial and lateral boundary conditions for Polar MM5. LGM boundary conditions include continental ice sheets, appropriate orbital forcing, reduced CO2 concentration, paleovegetation, modified sea surface temperatures, and lowered sea level. Polar MM5 produces a substantially different atmospheric response to the LGM boundary conditions than CCM3 and other recent GCM simulations. In particular, from November to April the upper-level flow is split around a blocking anticyclone over the LIS, with a northern branch over the Canadian Arctic and a southern branch impacting southern North America. The split flow pattern is most pronounced in January and transitions into a single, consolidated jet stream that migrates northward over the LIS during summer. Sensitivity experiments indicate that the winter split flow in Polar MM5 is primarily due to mechanical forcing by LIS, although model physics and resolution also contribute to the simulated flow configuration. Polar MM5 LGM results are generally consistent with proxy climate estimates in the western United States, Alaska, and the Canadian Arctic and may help resolve some long-standing discrepancies between proxy data and previous simulations of the LGM climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The research comparing imaginal and in vivo exposure in the treatment of clinically significant fear, recently reviewed by James (1986), is reexamined from the perspective of bioinformational theory and the concept of emotional processing. Fear is assumed to be stored in long term memory as a network of propositionally-coded information, which has to be processed if treatment is to be successful. Emotional processing is indicated by activation of fear responses and their habituation within and across treatment sessions. Consistent with the theory, our review indicates that successful treatment via imaginal and in vivo exposure is indeed related to activation and habituation of fear responses; interference with processing has a negative impact upon fear reduction, regardless of the specific treatment techniques employed. Furthermore, some apparently discrepant findings in the available research literature can be understood in terms of the theories cited. These ideas provide a useful perspective from which to plan future research efforts and to advance our understanding of the processes underlying reduction of pathological fear.