2 resultados para Biotic communities--Ontario--Short Hills Provincial Park.

em DigitalCommons - The University of Maine Research


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Major episodic acidifications were observed on several occasions in first-order brooks at Acadia National Park, Mount Desert Island, Maine. Short-term declines of up to 2 pH units and 130-mu-eq L-1 acid-neutralizing capacity were caused by HCl from soil solutions, rather than by H2SO4 or HNO3 from precipitation, because (1) SO4 concentrations were constant or decreased during the pH depression, (2) Cl concentrations were greatest at the time of lowest pH, and (3) Na:Cl ratios decreased from values much greater than those in precipitation (a result of chemical weathering), to values equal to or less than those in precipitation. Dilution, increases in NO3 concentrations, or increased export or organic acidity from soils were insufficient to cause the observed decreases in pH. These data represent surface water acidifications due primarily to an ion exchange "salt effect" of Na+ for H+ in soil solution, and secondarily to dilution, neither of which is a consequence of acidic deposition. The requisite conditions for a major episodic salt effect acidification include acidic soils, and either an especially salt-laden wet precipitation event, or a period of accumulation of marine salts from dry deposition, followed by wet inputs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We track dated firn horizons within 400 MHz short-pulse radar profiles to find the continuous extent over which they can be used as historical benchmarks to study past accumulation rates in West Antarctica. The 30-40 cm pulse resolution compares with the accumulation rates of most areas. We tracked a particular set that varied from 30 to 90 m in depth over a distance of 600 km. The main limitations to continuity are fading at depth, pinching associated with accumulation rate differences within hills and valleys, and artificial fading caused by stacking along dips. The latter two may be overcome through multi-kilometer distances by matching the relative amplitude and spacing of several close horizons, along with their pulse forms and phases. Modeling of reflections from thin layers suggests that the - 37 to - 50 dB range of reflectivity and the pulse waveforms we observed are caused by the numerous thin ice layers observed in core stratigraphy. Constructive interference between reflections from these close, high-density layers can explain the maintenance of reflective strength throughout the depth of the firn despite the effects of compaction. The continuity suggests that these layers formed throughout West Antarctica and possibly into East Antarctica as well.