3 resultados para Biomass carbon

em DigitalCommons - The University of Maine Research


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean biogeochemical and ecosystem processes are linked by net primary production (NPP) in the ocean's surface layer, where inorganic carbon is fixed by photosynthetic processes. Determinations of NPP are necessarily a function of phytoplankton biomass and its physiological status, but the estimation of these two terms from space has remained an elusive target. Here we present new satellite ocean color observations of phytoplankton carbon (C) and chlorophyll (Chl) biomass and show that derived Chl:C ratios closely follow anticipated physiological dependencies on light, nutrients, and temperature. With this new information, global estimates of phytoplankton growth rates (mu) and carbon-based NPP are made for the first time. Compared to an earlier chlorophyll-based approach, our carbon-based values are considerably higher in tropical oceans, show greater seasonality at middle and high latitudes, and illustrate important differences in the formation and demise of regional algal blooms. This fusion of emerging concepts from the phycological and remote sensing disciplines has the potential to fundamentally change how we model and observe carbon cycling in the global oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Humans have reduced the abundance of many large marine vertebrates, including whales, large fish, and sharks, to only a small percentage of their pre-exploitation levels. Industrial fishing and whaling also tended to preferentially harvest the largest species and largest individuals within a population. We consider the consequences of removing these animals on the ocean's ability to store carbon. Methodology/Principal Findings: Because body size is critical to our arguments, our analysis focuses on populations of baleen whales. Using reconstructions of pre-whaling and modern abundances, we consider the impact of whaling on the amount of carbon stored in living whales and on the amount of carbon exported to the deep sea by sinking whale carcasses. Populations of large baleen whales now store 9.1 x 10(6) tons less carbon than before whaling. Some of the lost storage has been offset by increases in smaller competitors; however, due to the relative metabolic efficiency of larger organisms, a shift toward smaller animals could decrease the total community biomass by 30% or more. Because of their large size and few predators, whales and other large marine vertebrates can efficiently export carbon from the surface waters to the deep sea. We estimate that rebuilding whale populations would remove 1.6 x 10(5) tons of carbon each year through sinking whale carcasses. Conclusions/Significance: Even though fish and whales are only a small portion of the ocean's overall biomass, fishing and whaling have altered the ocean's ability to store and sequester carbon. Although these changes are small relative to the total ocean carbon sink, rebuilding populations of fish and whales would be comparable to other carbon management schemes, including ocean iron fertilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Net primary production (NPP) is commonly modeled as a function of chlorophyll concentration (Chl), even though it has been long recognized that variability in intracellular chlorophyll content from light acclimation and nutrient stress confounds the relationship between Chl and phytoplankton biomass. It was suggested previously that satellite estimates of backscattering can be related to phytoplankton carbon biomass (C) under conditions of a conserved particle size distribution or a relatively stable relationship between C and total particulate organic carbon. Together, C and Chl can be used to describe physiological state (through variations in Chl:C ratios) and NPP. Here, we fully develop the carbon-based productivity model (CbPM) to include information on the subsurface light field and nitracline depths to parameterize photoacclimation and nutrient stress throughout the water column. This depth-resolved approach produces profiles of biological properties (Chl, C, NPP) that are broadly consistent with observations. The CbPM is validated using regional in situ data sets of irradiance-derived products, phytoplankton chlorophyll: carbon ratios, and measured NPP rates. CbPM-based distributions of global NPP are significantly different in both space and time from previous Chl-based estimates because of the distinction between biomass and physiological influences on global Chl fields. The new model yields annual, areally integrated water column production of similar to 52 Pg C a(-1) for the global oceans.