4 resultados para Bellingshausen Sea, small escarpment at shelf break
em DigitalCommons - The University of Maine Research
Resumo:
The Princeton Ocean Model is used to study the circulation in the South China Sea (SCS) and its seasonal transition. Kuroshio enters ( leaves) the SCS through the southern ( northern) portion of the Luzon Strait. The annually averaged net volume flux through the Luzon Strait is similar to2 Sv into the SCS with seasonal reversals. The inflow season is from May to January with the maximum intrusion of Kuroshio water reaching the western SCS during fall in compensation of summertime surface offshore transport associated with coastal upwelling. From February to April the net transport reverses from the SCS to the Pacific. The intruded Kuroshio often forms an anticyclonic current loop west of the Luzon Strait. The current loop separates near the Dongsha Islands with the northward branch continuously feeding the South China Sea Warm Current (SCSWC) near the shelf break and the westward branch becoming the South China Sea Branch of Kuroshio on the slope, which is most apparent in the fall. The SCSWC appears from December to February on the seaward side of the shelf break, flowing eastward against the prevailing wind. Diagnosis shows that the onshore Ekman transport due to northeasterly monsoon generates upwelling when moving upslope, and the particular distributions of the density and sea level associated with the cross shelf motion supports the SCSWC.
Resumo:
We examined high-resolution cross-shelf distributions of particulate organic carbon (POC) and dissolved O(2) during the upwelling season off the Oregon coast. Oxygen concentrations were supersaturated in surface waters, and hypoxic in near-bottom waters, with greatly expanded hypoxic conditions late in the season. Simplified time-dependent mass balances on cross-shelf integrated concentrations of these two parameters, found the following: ( 1) The average net rate of photosynthesis generated 2.1 mmol O(2) m(-3) d(-1) and ( 2) essentially none of the corresponding net carbon fixation of 1.4 mmol m(-3) d(-1) could be accounted for in the observed standing stocks of POC. After examining other possible sinks for carbon, we conclude that most of the net production is being exported to the adjacent deep ocean. A simplified POC budget suggests that about a quarter of the export is via alongshore advection, and the remainder is due to some other process. We propose a simplistic conceptual model of across-shelf transport in which POC sinks to the bottom boundary layer where it comes into contact with mineral ballast material but is kept in suspension by high turbulence. When upwelling conditions ease, the BBL waters move seaward, carrying the suspended, ballasted POC with it where it sinks rapidly into the deep ocean at the shelf break. This suggests a mechanism whereby the duration and frequency of upwelling events and relaxations can determine the extent to which new carbon produced by photosynthesis in the coastal ocean is exported to depth rather than being respired on the shelf.
Resumo:
This paper forms part of a broader overview of biodiversity of marine life in the Gulf of Maine area (GoMA), facilitated by the GoMA Census of Marine Life program. It synthesizes current data on species diversity of zooplankton and pelagic nekton, including compilation of observed species and descriptions of seasonal, regional and cross-shelf diversity patterns. Zooplankton diversity in the GoMA is characterized by spatial differences in community composition among the neritic environment, the coastal shelf, and deep offshore waters. Copepod diversity increased with depth on the Scotian Shelf. On the coastal shelf of the western Gulf of Maine, the number of higher-level taxonomic groups declined with distance from shore, reflecting more nearshore meroplankton. Copepod diversity increased in late summer, and interdecadal diversity shifts were observed, including a period of higher diversity in the 1990s. Changes in species diversity were greatest on interannual scales, intermediate on seasonal scales, and smallest across regions, in contrast to abundance patterns, suggesting that zooplankton diversity may be a more sensitive indicator of ecosystem response to interannual climate variation than zooplankton abundance. Local factors such as bathymetry, proximity of the coast, and advection probably drive zooplankton and pelagic nekton diversity patterns in the GoMA, while ocean-basin-scale diversity patterns probably contribute to the increase in diversity at the Scotian Shelf break, a zone of mixing between the cold-temperate community of the shelf and the warm-water community offshore. Pressing research needs include establishment of a comprehensive system for observing change in zooplankton and pelagic nekton diversity, enhanced observations of "underknown'' but important functional components of the ecosystem, population and metapopulation studies, and development of analytical modeling tools to enhance understanding of diversity patterns and drivers. Ultimately, sustained observations and modeling analysis of biodiversity must be effectively communicated to managers and incorporated into ecosystem approaches for management of GoMA living marine resources.
Resumo:
Chemistry data from 16, 50-115 m deep, sub-annually dated ice cores are used to investigate spatial and temporal concentration variability of sea-salt (ss) SO42- and excess (xs) SO42- over West Antarctica and the South Pole for the last 200 years. Low-elevation ice-core sites in western West Antarctica contain higher concentrations Of SO42- as a result of cyclogenesis over the Ross Ice Shelf and proximity to the Ross Sea Polynya. Linear correlation analysis of 15 West Antarctic ice-core SO42- time series demonstrates that at several sites concentrations Of ssSO(4)(2-) are higher when sea-ice (SIE) extent is greater, and the inverse for XSS04. Concentrations Of XSS04 from the South Pole site (East Antarctica) are associated with SIE from the Weddell region, and West Antarctic XSSO42- concentrations are associated with SIE from the Bellingshausen-Amundsen-Ross region. The only notable rise of the last 200 years in xsSO(4)(2-), around 1940, is not related to SIE fluctuations and is most likely a result of increased xsSO(4)(2-) production in the mid-low latitudes and/or an increase in transport efficiency from the mid-low latitudes to central West Antarctica. These high-resolution records show that the source types and source areas Of ssSO(4)(2-) and xsSO(4)(2-) delivered to eastern and western West Antarctica and the South Pole differ from site to site but can best be resolved using records from spatial ice-core arrays such as the International Trans-Antarctic Scientific Expedition (ITASE).