4 resultados para Bellingshausen Sea, deep part of trough in Eltanin Bay
em DigitalCommons - The University of Maine Research
Resumo:
An annually dated ice core recovered from South Pole (2850 in a.s.l.) in 1995, that covers the period 1487-1992, was analyzed for the marine biogenic sulfur species methanesulfonate (MS). Empirical orthogonal function analysis is used to calibrate the high-resolution MS series with associated environmental series for the period of overlap (1973-92). Utilizing this calibration we present a similar to500 year long proxy record of the polar expression of the El Nino-Southern Oscillation (ENSO) and southeastern Pacific sea-ice extent variations. These records reveal short-term periods of increased (1800-50, 1900-40) and decreased sea-ice extent (1550-1610., 1660-1710, 1760-1800). In general, increased (decreased) sea-ice extent is associated with a higher (lower) frequency of El Nino events.
Resumo:
Jakobshavn Isbrae is a major ice stream that drains the west-central Greenland ice sheet and becomes afloat in Jakobshavn Isfiord (69degreesN, 49degreesW), where it has maintained the world's fastest-known sustained velocity and calving rate (7 km a(-1)) for at least four decades. The floating portion is approximately 12 km long and 6 km wide. Surface elevations and motion vectors were determined photogrammetrically for about 500 crevasses on the floating ice, and adjacent grounded ice, using aerial photographs obtained 2 weeks apart in July 1985. Surface strain rates were computed from a mesh of 399 quadrilateral elements having velocity measurements at each corner. It is shown that heavy crevassing of floating ice invalidates the assumptions of linear strain theory that (i) surface strain in the floating ice is homogeneous in both space and time, (ii) the squares and products of strain components are nil, and (iii) first- and second-order rotation components are small compared to strain components. Therefore, strain rates and rotation rates were also computed using non-linear strain theory. The percentage difference between computed linear and non-linear second invariants of strain rate per element were greatest (mostly in the range 40-70%) where crevassing is greatest. Isopleths of strain rate parallel and transverse to flow and elevation isopleths relate crevassing to known and inferred pinning points.
Resumo:
Catches of leptocephali of shelf and slope marine eels of the Chlopsidae, Congridae, Moringuidae, Muraenidae, and Ophichthidae collected during a survey in the southwestern Sargasso Sea in late September and early October 1984 were analyzed to learn about their reproductive ecology and larval transport. Sampling along a transect from the Florida Current (FC) out across the southwestern Sargasso Sea and in the Northwest Providence Channel (NWPC) of the Northern Bahamas enabled the evaluation of the larval distributions, abundances and size ranges, regional assemblage structure, and the apparent spawning areas of these marine eels. Distinctly different assemblages observed in the FC and NWPC included the congrid genera Heteroconger, Paraconger, Uroconger, and many ophichthid species, which were rare or absent offshore. Other taxa of congrids, chlopsids, muraenids and moringuids were present in all areas, but the smallest specimens of most taxa were only caught at the NWPC or FC stations. Multivariate analyses reflected higher richness and abundance in the FC and NWPC and also similar species compositions in offshore areas. The patterns of distribution of these leptocephali differed from those of anguillid, nettastomatid, and mesopelagic eel leptocephali collected in the same survey. These findings support the hypothesis that most taxa of marine eels spawn close to their adult habitats, and indicate that despite high biodiversity of marine eels in the Northern Bahamas, only some species of leptocephali appear to get transported far offshore by ocean currents.
Resumo:
Satellite-derived data provide the temporal means and seasonal and nonseasonal variability of four physical and biological parameters off Oregon and Washington ( 41 degrees - 48.5 degrees N). Eight years of data ( 1998 - 2005) are available for surface chlorophyll concentrations, sea surface temperature ( SST), and sea surface height, while six years of data ( 2000 - 2005) are available for surface wind stress. Strong cross-shelf and alongshore variability is apparent in the temporal mean and seasonal climatology of all four variables. Two latitudinal regions are identified and separated at 44 degrees - 46 degrees N, where the coastal ocean experiences a change in the direction of the mean alongshore wind stress, is influenced by topographic features, and has differing exposure to the Columbia River Plume. All these factors may play a part in defining the distinct regimes in the northern and southern regions. Nonseasonal signals account for similar to 60 - 75% of the dynamical variables. An empirical orthogonal function analysis shows stronger intra-annual variability for alongshore wind, coastal SST, and surface chlorophyll, with stronger interannual variability for surface height. Interannual variability can be caused by distant forcing from equatorial and basin-scale changes in circulation, or by more localized changes in regional winds, all of which can be found in the time series. Correlations are mostly as expected for upwelling systems on intra-annual timescales. Correlations of the interannual timescales are complicated by residual quasi-annual signals created by changes in the timing and strength of the seasonal cycles. Examination of the interannual time series, however, provides a convincing picture of the covariability of chlorophyll, surface temperature, and surface height, with some evidence of regional wind forcing.