10 resultados para Beijing da xue

em DigitalCommons - The University of Maine Research


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three-dimensional Princeton Ocean Model is used to examine the modification of the Gulf Stream and its meanders by cold air outbreaks. Two types of Gulf Stream meanders are found in the model. Meanders on the shoreward side of the Gulf Stream are baroclinically unstable. They are affected little by the atmospheric forcing because their energy source is stored at the permanent thermocline, well below the influence of the surface forcing. Meanders on the seaward side of the stream are both barotropically and baroclinically unstable. The energy feeding these meanders is stored at the surface front separating the Gulf Stream and the Sargasso Seal which is greatly reduced in case of cold air outbreaks. Thus, meanders there reduce strength and also seem to slow their downstream propagation due to the southward Ekman flow. Heat budget calculations suggest two almost separable processes. The oceanic heal released to the atmosphere during these severe cooling episodes comes almost exclusively from the upper water column. Transport of heat by meanders from the Gulf Stream to the shelf, though it is large, does not disrupt the principal balance. It is balanced nicely with the net heat transport in the downstream direction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A three-dimensional, regional coupled atmosphere-ocean model with full physics is developed to study air-sea interactions during winter storms off the U. S. east coast. Because of the scarcity of open ocean observations, models such as this offer valuable opportunities to investigate how oceanic forcing drives atmospheric circulation and vice versa. The study presented here considers conditions of strong atmospheric forcing (high wind speeds) and strong oceanic forcing (significant sea surface temperature (SST) gradients). A simulated atmospheric cyclone evolves in a manner consistent with Eta reanalysis, and the simulated air-sea heat and momentum exchanges strongly affect the circulations in both the atmosphere and the ocean. For the simulated cyclone of 19-20 January 1998, maximum ocean-to-atmosphere heat fluxes first appear over the Gulf Stream in the South Atlantic Bight, and this results in rapid deepening of the cyclone off the Carolina coast. As the cyclone moves eastward, the heat flux maximum shifts into the region near Cape Hatteras and later northeast of Hatteras, where it enhances the wind locally. The oceanic response to the atmospheric forcing is closely related to the wind direction. Southerly and southwesterly winds tend to strengthen surface currents in the Gulf Stream, whereas northeasterly winds weaken the surface currents in the Gulf Stream and generate southwestward flows on the shelf. The oceanic feedback to the atmosphere moderates the cyclone strength. Compared with a simulation in which the oceanic model always passes the initial SST to the atmospheric model, the coupled simulation in which the oceanic model passes the evolving SST to the atmospheric model produces higher ocean-to-atmosphere heat flux near Gulf Stream meander troughs. This is due to wind-driven lateral shifts of the stream, which in turn enhance the local northeasterly winds. Away from the Gulf Stream the coupled simulation produces surface winds that are 5 similar to 10% weaker. Differences in the surface ocean currents between these two experiments are significant on the shelf and in the open ocean.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous mesoscale eddies occur each year in the South China Sea (SCS), but their statistical characteristics are still not well documented. A Pacific basin-wide three dimensional physical-biogeochemical model has been developed and the result in the SCS subdomain is used to quantify the eddy activities during the period of 1993-2007. The modeled results are compared with a merged and gridded satellite product of sea level anomaly by using the same eddy identification and tracking method. On average, there are about 32.9 +/- 2.4 eddies predicted by the model and 32.8 +/- 3.4 eddies observed by satellite each year, and about 52% of them are cyclonic eddies. The radius of these eddies ranges from about 46.5 to 223.5 km, with a mean value of 87.4 km. More than 70% of the eddies have a radius smaller than 100 km. The mean area covered by these eddies each year is around 160,170 km(2), equivalent to 9.8% of the SCS area with water depths greater than 1000 m. Linear relationships are found between eddy lifetime and eddy magnitude and between eddy vertical extent and eddy magnitude, showing that strong eddies usually last longer and penetrate deeper than weak ones. Interannual variations in eddy numbers and the total eddy-occupied area indicate that eddy activities in the SCS do not directly correspond to the El Nino-Southern Oscillation events. The wind stress curls are thought to be an important but not the only mechanism of eddy genesis in the SCS.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Princeton Ocean Model is used to study the circulation in the Gulf of Maine and its seasonal transition in response to wind, surface heat flux, river discharge, and the M-2 tide. The model has an orthogonal-curvature linear grid in the horizontal with variable spacing from 3 km nearshore to 7 km offshore and 19 levels in the vertical. It is initialized and forced at the open boundary with model results from the East Coast Forecast System. The first experiment is forced by monthly climatological wind and heat flux from the Comprehensive Ocean Atmosphere Data Set; discharges from the Saint John, Penobscot, Kennebec, and Merrimack Rivers are added in the second experiment; the semidiurnal lunar tide (M-2) is included as part of the open boundary forcing in the third experiment. It is found that the surface heat flux plays an important role in regulating the annual cycle of the circulation in the Gulf of Maine. The spinup of the cyclonic circulation between April and June is likely caused by the differential heating between the interior gulf and the exterior shelf/slope region. From June to December the cyclonic circulation continues to strengthen, but gradually shrinks in size. When winter cooling erodes the stratification, the cyclonic circulation penetrates deeper into the water column. The circulation quickly spins down from December to February as most of the energy is consumed by bottom friction. While inclusion of river discharge changes details of the circulation pattern, the annual evolution of the circulation is largely unaffected. On the other hand, inclusion of the tide results in not only the anticyclonic circulation on Georges Bank but also modifications to the seasonal circulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Princeton Ocean Model is used to study the circulation in the South China Sea (SCS) and its seasonal transition. Kuroshio enters ( leaves) the SCS through the southern ( northern) portion of the Luzon Strait. The annually averaged net volume flux through the Luzon Strait is similar to2 Sv into the SCS with seasonal reversals. The inflow season is from May to January with the maximum intrusion of Kuroshio water reaching the western SCS during fall in compensation of summertime surface offshore transport associated with coastal upwelling. From February to April the net transport reverses from the SCS to the Pacific. The intruded Kuroshio often forms an anticyclonic current loop west of the Luzon Strait. The current loop separates near the Dongsha Islands with the northward branch continuously feeding the South China Sea Warm Current (SCSWC) near the shelf break and the westward branch becoming the South China Sea Branch of Kuroshio on the slope, which is most apparent in the fall. The SCSWC appears from December to February on the seaward side of the shelf break, flowing eastward against the prevailing wind. Diagnosis shows that the onshore Ekman transport due to northeasterly monsoon generates upwelling when moving upslope, and the particular distributions of the density and sea level associated with the cross shelf motion supports the SCSWC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold surface temperatures, reflecting Scotian Shelf origins and local tidal mixing, serve as a tracer of the Eastern Maine Coastal Current and its offshore extensions, which appear episodically as cold plumes erupting from the eastern Maine shelf. A cold water plume emanating from the Eastern Maine Coastal Current in May 1994 was investigated using advanced very high resolution radiometer (AVHRR) imagery, shipboard surveys of physical and biochemical properties, and satellite-tracked drifters. Evidence is presented that suggests that some of the plume waters were entrained within the cyclonic circulation over Jordan Basin, while the major portion participated in an anticyclonic eddy at the distal end of the plume. Calculations of the nitrate transported offshore by the plume show that this feature can episodically export significant quantities of nutrients from the Eastern Maine Coastal Current to offshore regions that are generally nutrient depleted during spring-summer. A series of AVHRR images is used to document the seasonal along-shelf progression of the coastal plume separation point. We speculate on potential causes and consequences of plume separation from the coastal current and suggest that this feature may be an important factor influencing the patterns and overall biological productivity of the eastern Gulf of Maine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Princeton Ocean Model is used to study the circulation features in the Pearl River Estuary and their responses to tide, river discharge, wind, and heat flux in the winter dry and summer wet seasons. The model has an orthogonal curvilinear grid in the horizontal plane with variable spacing from 0.5 km in the estuary to 1 km on the shelf and 15 sigma levels in the vertical direction. The initial conditions and the subtidal open boundary forcing are obtained from an associated larger-scale model of the northern South China Sea. Buoyancy forcing uses the climatological monthly heat fluxes and river discharges, and both the climatological monthly wind and the realistic wind are used in the sensitivity experiments. The tidal forcing is represented by sinusoidal functions with the observed amplitudes and phases. In this paper, the simulated tide is first examined. The simulated seasonal distributions of the salinity, as well as the temporal variations of the salinity and velocity over a tidal cycle are described and then compared with the in situ survey data from July 1999 and January 2000. The model successfully reproduces the main hydrodynamic processes, such as the stratification, mixing, frontal dynamics, summer upwelling, two-layer gravitational circulation, etc., and the distributions of hydrodynamic parameters in the Pearl River Estuary and coastal waters for both the winter and the summer season.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two cruises were carried out in the summer and winter of 1998 to study coupled physical-chemical-biological processes in the South China Sea and their effects on phytoplankton stock and production. The results clearly show that the seasonal distributions of phytoplankton were closely related to the coupled processes driven by the East Asian Monsoon. Summer southwesterly monsoon induced upwelling along the China and Vietnam coasts. Several mesoscale cyclonic cold eddies and anticyclonic warm pools were identified in both seasons. In the summer, the upwelling and cold eddies, both associated with rich nutrients, low dissolved oxygen ( DO), high chlorophyll a (Chl a) and primary production ( PP), were found in the areas off the coast of central Vietnam, southeast of Hainan Island and north of the Sunda shelf, whereas in the winter they form a cold trough over the deep basin aligning from southwest to northeast. The warm pools with poor nutrients, high DO, low Chl a, and PP were found in the areas southeast of Vietnam, east of Hainan, and west of Luzon during the summer, and a northwestward warm jet from the Sulu Sea with properties similar to the warm pools was encountered during the winter. The phytoplankton stock and primary production were lower in summer due to nutrient depletion near the surface, particularly PO4. This phosphorus depletion resulted in phytoplankton species succession from diatoms to dinoflagellates and cyanophytes. A strong subsurface Chl a maximum, dominated by photosynthetic picoplankton, was found to contribute significantly to phytoplankton stocks and production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Princeton Ocean Model is used to study the circulation in the Pear River Estuary (PRE) and the adjacent coastal waters in the winter and summer seasons. Wong et al. [2003] compares the simulation results with the in situ measurements collected during the Pearl River Estuary Pollution Project (PREPP). In this paper, sensitivity experiments are carried out to examine the plume and the associated frontal dynamics in response to seasonal discharges and monsoon winds. During the winter, convergence between the seaward spreading plume water and the saline coastal water sets up a salinity front that aligns from the northeast to the southwest inside the PRE. During the summer the plume water fills the PRE at the surface and spreads eastward in the coastal waters in response to the prevailing southwesterly monsoon. The overall alignment of the plume is from the northwest to the southeast. The subsurface front is similar to that in the winter and summer except that the summer front is closer to the mouth and the winter front closer to the head of the estuary. Inside the PRE, bottom flows are always toward the head of the estuary, attributed to the density gradient associated with the plume front. In contrast, bottom flows in the shelf change from offshore in winter to onshore in summer, reflecting respectively the wintertime downwelling and summertime upwelling. Wind also plays an essential role in controlling the plume at the surface. An easterly wind drives the plume westward regardless winter or summer. The eastward spreading of the plume during the summer can be attributed to the southerly component of the wind. On the other hand, the surface area of the plume is positively proportional to the amount of discharge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Beginning in the late 1980s, lobster (Homarus americanus) landings for the state of Maine and the Bay of Fundy increased to levels more than three times their previous 20-year means. Reduced predation may have permitted the expansion of lobsters into previously inhospitable territory, but we argue that in this region the spatial patterns of recruitment and the abundance of lobsters are substantially driven by events governing the earliest life history stages, including the abundance and distribution of planktonic stages and their initial settlement as Young-of-Year (YOY) lobsters. Settlement densities appear to be strongly driven by abundance of the pelagic postlarvae. Postlarvae and YOY show large-scale spatial patterns commensurate with coastal circulation, but also multi-year trends in abundance and abrupt shifts in abundance and spatial patterns that signal strong environmental forcing. The extent of the coastal shelf that defines the initial settlement grounds for lobsters is important to future population modeling. We address one part of this definition by examining patterns of settlement with depth, and discuss a modeling framework for the full life history of lobsters in the Gulf of Maine.