4 resultados para Beam profiling

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

lsochronal layers in firn detected with ground-penetrating radar (GPR) and dated using results from ice-core analyses are used to calculate accumulation rates along a 100 km across-flow profile in West Antarctica. Accumulation rates are shown to be highly variable over short distances. Elevation measurements from global positioning system surveys show that accumulation rates derived from shallow horizons correlate well with surface undulations, which implies that wind redistribution of snow is the leading cause of this variability. Temporal changes in accumulation rate over 25-185 year intervals are smoothed to along-track length scales comparable to surface undulations in order to identify trends in accumulation that are likely related to changes in climate. Results show that accumulation rates along this profile have decreased in recent decades, which is consistent with core-derived time series of annual accumulation rates measured at the two ends of the radar profile. These results suggest that temporal variability observed in accumulation-rate records from ice cores and GPR profiles can be obscured by spatial influences, although it is possible to resolve temporal signals if the effects of local topography and ice flow are quantified and removed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical and biological sensor technologies have advanced rapidly in the past five years. Sensors that require low power and operate for multiple years are now available for oxygen, nitrate, and a variety of bio-optical properties that serve as proxies for important components of the carbon cycle (e.g., particulate organic carbon). These sensors have all been deployed successfully for long periods, in some cases more than three years, on platforms such as profiling floats or gliders. Technologies for pH, pCO(2), and particulate inorganic carbon are maturing rapidly as well. These sensors could serve as the enabling technology for a global biogeochemical observing system that might operate on a scale comparable to the current Argo array. Here, we review the scientific motivation and the prospects for a global observing system for ocean biogeochemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this study was to test the hypothesis that the aggregated state of natural marine particles constrains the sensitivity of optical beam attenuation to particle size. An instrumented bottom tripod was deployed at the 12-m node of the Martha's Vineyard Coastal Observatory to monitor particle size distributions, particle size-versus-settling-velocity relationships, and the beam attenuation coefficient (c(p)) in the bottom boundary layer in September 2007. An automated in situ filtration system on the tripod collected 24 direct estimates of suspended particulate mass (SPM) during each of five deployments. On a sampling interval of 5 min, data from a Sequoia Scientific LISST 100x Type B were merged with data from a digital floc camera to generate suspended particle volume size distributions spanning diameters from approximately 2 mu m to 4 cm. Diameter-dependent densities were calculated from size-versus-settling-velocity data, allowing conversion of the volume size distributions to mass distributions, which were used to estimate SPM every 5 min. Estimated SPM and measured c(p) from the LISST 100x were linearly correlated throughout the experiment, despite wide variations in particle size. The slope of the line, which is the ratio of c(p) to SPM, was 0.22 g m(-2). Individual estimates of c(p):SPM were between 0.2 and 0.4 g m(-2) for volumetric median particle diameters ranging from 10 to 150 mu m. The wide range of values in c(p):SPM in the literature likely results from three factors capable of producing factor-of-two variability in the ratio: particle size, particle composition, and the finite acceptance angle of commercial beam-transmissometers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we examined the spatial and temporal variability of particulate organic material (POM) off Oregon during the upwelling season. High-resolution vertical profiling of beam attenuation was conducted along two cross-shelf transects. One transect was located in a region where the shelf is relatively uniform and narrow (off Cascade Head (CH)); the second transect was located in a region where the shelf is shallow and wide (off Cape Perpetua (CP)). In addition, water samples were collected for direct analysis of chlorophyll, particulate organic carbon (POC), and particulate organic nitrogen (PON). Beam attenuation was highly correlated with POC and PON. Striking differences in distribution patterns and characteristics of POM were observed between CH and CP. Off CH, elevated concentrations of chlorophyll and POC were restricted to the inner shelf and were highly variable in time. The magnitude of the observed short-term temporal variability was of the same order as that of the seasonal variability reported in previous studies. Elevated concentrations of nondegraded chlorophyll and POM were observed near the bottom. Downwelling and rapid sinking are two mechanisms by which phytoplankton cells can be delivered to the bottom before being degraded. POM may be then transported across the shelf via the benthic nepheloid layer. Along the CP transect, concentrations of POM were generally higher than they were along the CH transect and extended farther across the shelf. Characteristics of surface POM, namely, C: N ratios and carbon: chlorophyll ratios, differed between the two sites. These differences can be attributed to differences in shelf circulation.