2 resultados para Bacterial production by thymidine uptake rate

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial production assays (thymidine incorporation rates) were used to evaluate the activity of heterotrophic bacteria at the chemocline region in both the East (ELB) and West (WLB) Lobes of permanently ice-covered Lake Bonney, in the Taylor Valley of Antarctica. The magnitude of activity varied dramatically within the depth interval of 1 to 2 m from moderate to very low levels below the chemocline, especially in the East Lobe, where chemical distributions indicate the absence of a normally functioning nitrogen cycle. Several parameters (e.g. addition of nutrients or chelators, dilution) were manipulated in incubation experiments in order to identify factors that would enhance activity in the suboxic deep waters of the East Lobe. Activity, in terms of thymidine incorporation, was consistently detected in the deep-water communities, implying that, although the water may be 'toxic', the cells remain viable. None of the treatments resulted in consistent enhancement of thymidine incorporation rates in samples from below the chemocline. Bacterial populations above the chemocline appear to be phosphorus-limited. The nature of the limitation, toxicity or inhibition that limits bacterial activity in the suboxic waters has not been identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The equatorial Pacific Ocean is the largest natural source of CO(2) to the atmosphere, and it significantly impacts the global carbon cycle. Much of the large flux of upwelled CO(2) to the atmosphere is due to incomplete use of the available nitrate (NO(3)) and low net productivity. This high-nutrient low-chlorophyll (HNLC) condition of the equatorial upwelling zone (EUZ) has been interpreted from modeling efforts to be due to low levels of silicate ( Si( OH) 4) that limit the new production of diatoms. These ideas were incorporated into an ecosystem model, CoSINE. This model predicted production by the larger phytoplankton and the picoplankton and effects on air-sea CO(2) fluxes in the Pacific Ocean. However, there were no size-fractionated rates available for verification. Here we report the first size-fractionated new and regenerated production rates (obtained with (15)N - NO(3) and (15)N - NH(4) incubations) for the EUZ with the objective of validating the conceptual basis and functioning of the CoSINE model. Specifically, the larger phytoplankton ( with cell diameters > 5 mu m) had greater rates of new production and higher f-ratios (i.e., the proportion of NO(3) to the sum of NO(3) and NH(4) uptake) than the picoplankton that had high rates of NH(4) uptake and low f-ratios. The way that the larger primary producers are regulated in the EUZ is discussed using a continuous chemostat approach. This combines control of Si(OH)(4) production by supply rate (bottom-up) and control of growth rate ( or dilution) by grazing ( top-down control).