4 resultados para BEACHES
em DigitalCommons - The University of Maine Research
Variations in Ice Rafted Detritus on Beaches in the South Shetland Islands: A Possible Climate Proxy
Resumo:
Raised beach ridges on Livingston Island of the South Shetland Islands display variations in both quantity and source of ice rafted detritus (IRD) received over time. Whereas the modem beach exhibits little IRD, all of which is of local origin, the next highest beach (similar to250 C-14 yr BP) has large amounts, some of which comes from as far away as the Antarctic Peninsula. Significant quantities of IRD also were deposited similar to 1750 C-14 yr BP. Both time periods coincide with generally cooler regional conditions and, at least in the case of the similar to250 yr old beach, local glacial advance. We suggest that the increases in ice rafting may reflect periods of greater glacial activity, altered ocean circulation, and/or greater iceberg preservation during the late Holocene. Limited IRD and lack of far-travelled erratics on the modem beach are both consistent with the ongoing warming trend in the Antarctic Peninsula region.
Resumo:
Bending shear was observed to produce nearly vertical shear bands in a calving ice wall standing on dry land on Deception Island (Iat. 63.0 oS., long. 60.6 W.), and slabs calved straight downward when shear rupture occurred along these shear bands (Hughes, 1989). A formula for the calving rate was developed from the Deception Island data, and we have attempted to justify generalizing this formula to include ice walls standing along beaches or in water. These are environments in which a wave-washed groove develops along the base of the ice wall or along a water line above the base. The rate of wave erosion provides an alternative mechanism for controlling the calving rate in these environments. We have determined that the rate at which bending creep produces nearly vertical shear bands, along which shear r upture occurs, controls the calving rate in all environments. Shear rupture occurs at a calving shear stress of about I bar. Our results justify using the calving formula to compute the calving rate of ice walls in computer models of ice-sheet dynamics. This is especially important in simulating retreat of Northern Hemisphere ice sheets during the last deglaciation, when marine and lacustrine environments were common along retreating ice margins. These margins would have been ice walls standing along beaches or in water, because floating ice shelves are not expected in the ablation zone of retreating ice sheets.
Resumo:
This review assesses the circumpolar occurrence of emerged marine macrofossils and sediments from Antarctic coastal areas in relation to Late Quaternary climate changes. Radiocarbon ages of the macrofossils, which are interpreted in view of the complexities of the Antarctic marine radiocarbon reservoir and resolution of this dating technique, show a bimodal distribution. The data indicate that marine species inhabited coastal environments from at least 35000 to 20000 yr sp, during Marine Isotope Stage 3 when extensive iceberg calving created a 'meltwater lid' over the Southern Ocean. The general absence of these marine species from 20000 to 8500 yr sp coincides with the subsequent advance of the Antarctic ice sheets during the Last Glacial Maximum. Synchronous re-appearance of the Antarctic marine fossils in emerged beaches around the continent, all of wh ich have Holocene marine-limit elevations an order of magnitude lower than those in the Arctic, reflect minimal isostatic rebound as relative sea-level rise decelerated. Antarctic coastal marine habitat changes around the continent also coincided with increasing sea-ice extent and outlet glacial advances during the mid-Holocene. in view of the diverse environmental changes that occurred around the Earth during this period, it is suggested that Antarctic coastal areas were responding to a mid-Holocene climatic shift associated with the hydrological cycle. This synthesis of Late Quaternary emerged marine deposits demonstrates the application of evaluating circum-Antarctic phenomena from the glacial-terrestrial-marine transition zone.
Resumo:
Mole crabs of the genus Emerita (Family Hippidae) inhabit many of the temperate and tropical sandy beaches of the world. The nine described species of this genus are rarely sympatric, and most are endemic to broad biogeographic regions. The phylogenetic relationships among the species have not yet been investigated. Based on presumed morphological synapomorphics, it has been suggested that the species inhabiting the New World constitute a monophyletic group, as do the species inhabiting the Old World, The relationships within the New World species were previously studied using sequence data from Cytochrome Oxidase I and 16S rRNA mitochondrial genes; the results strongly suggested that one of the species, Emerita analoga, was very divergent from the other taxa examined. This observation prompted uncertainty about monophyly of the New World species. The goal of the present study was to elucidate the relationships among the species within the genus Emerita. Partial sequences for the mitochondrial COI and 16S rRNA genes for all nine species of the genus (and several outgroups) were examined. Phylogenetic analyses suggest that E. analoga is closer to the Old World taxa than to the other New World species; thus the New World Emerita species do not constitute a monophyletic group.