4 resultados para Axial-flux

em DigitalCommons - The University of Maine Research


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explosive volcanic eruptions can inject large quantities of sulphur dioxide into the stratosphere. The aerosols that result from oxidation of the sulphur dioxide can produce significant cooling of the troposphere by reflecting or absorbing solar radiation. It is possible to obtain an estimate of the relative stratospheric sulphur aerosol concentration produced by different volcanoes by comparing sulphuric acid fluxes determined by analysis of polar ice cores. Here, we use a non-sea-salt sulphate time series derived from three well-dated Law Dome ice cores to investigate sulphuric acid flux ratios for major eruptions over the period AD 1301-1995. We use additional data from other cores to investigate systematic spatial variability in the ratios. Only for the Kuwae eruption (Law Dome ice date AD 1459.5) was the H2SO4 flux larger than that deposited by Tambora (Law Dome ice date AD 1816.7).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined the flux of calcium, chloride and nitrate to the McMurdo Dry Valleys region by analysing snow pits for their chemical composition and their snow accumulation using multiple records spanning up to 48 years. The fluxes demonstrate patterns related to elevation and proximity to the ocean. In general, there is a strong relationship between the nitrate flux and snow accumulation, indicating that precipitation rates may have a great influence over the nitrogen concentrations in the soils of the valleys. Aeolian dust transport plays an important role in the deposition of some elements (e.g. C(2+)) into the McMurdo Dry Valleys' soils. Because of the antiquity of some of the soil surfaces in the McMurdo Dry Valleys regions, the accumulated atmospheric flux of salts to the soils has important ecological consequences. Although precipitation may be an important mechanism of salt deposition to the McMurdo Dry Valley surfaces, it is poorly understood because of difficulties in measurement and high losses from sublimation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a fracture-mechanics-based formulation to investigate primary oil migration through the propagation of an array of periodic, parallel fractures in a sedimentary rock with elevated pore fluid pressure. The rock is assumed to be a linearly elastic medium. The fracture propagation and hence oil migration velocity are determined using a fracture mechanics criterion together with the lubrication theory of fluid mechanics. We find that fracture interactions have profound effects on the primary oil migration behavior. For a given fracture length, the mass flux of oil migration decreases dramatically with an increase in fracture density. The reduced oil flux is due to the decreased fracture propagation velocity as well as the narrowed fracture opening that result from the fracture interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animal guts have been idealized as axially uniform plug-flow reactors (PFRs) without significant axial mixing or as combinations in series of such PFRs with other reactor types. To relax these often unrealistic assumptions and to provide a means for relaxing others, I approximated an animal gut as a series of n continuously stirred tank reactors (CSTRs) and examined its performance as a Function of n. For the digestion problem of hydrolysis and absorption in series, I suggest as a first approximation that a tubular gut of length L and diameter D comprises n=L/D tanks in series. For n greater than or equal to 10, there is little difference between performance of the nCSTR model and an ideal PFR in the coupled tasks of hydrolysis and absorption. Relatively thinner and longer guts, characteristic of animals feeding on poorer forage, prove more efficient in both conversion and absorption by restricting axial mixing, in the same total volume, they also give a higher rate of absorption. I then asked how a fixed number of absorptive sites should be distributed among the n compartments. Absorption rate generally is maximized when absorbers are concentrated in the hindmost few compartments, but high food quality or suboptimal ingestion rates decrease the advantage of highly concentrated absorbers. This modeling approach connects gut function and structure at multiple scales and can be extended to include other nonideal reactor behaviors observed in real animals.