3 resultados para Asia, Central--Maps

em DigitalCommons - The University of Maine Research


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Stable water isotope (delta(18)O, deltaD) data from a high elevation (5100 masl) ice core recovered from the Tien Shan Mountains, Kyrgyzstan, display a seasonal cycle in deuterium excess (d = deltaD - 8* delta(18)O) related to changes in the regional hydrologic cycle during 1994 - 2000. While there is a strong correlation (r(2) = 0.98) between delta(18)O and dD in the ice core samples, the regression slope (6.9) and mean d value (23.0) are significantly different than the global meteoric water line values. The resulting time-series ice core d profile contains distinct winter maxima and summer minima, with a yearly d amplitude of similar to 15 - 20parts per thousand. Local-scale processes that may affect d values preserved in the ice core are not consistent with the observed seasonal variability. Data from Central Asian monitoring sites in the Global Network of Isotopes in Precipitation (GNIP) have similar seasonal d changes. We suggest that regional-scale hydrological conditions, including seasonal changes in moisture source, transport, and recycling in the Caspian/ Aral Sea region, are responsible for the observed spatial and temporal d variability.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100 - 5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the delta(18)O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the arid and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen isotopic and soluble ionic measurements made on snow-pit (2 in depth) and firn-core (12.4 m depth samples recovered from the accumulation zone 5100 m) of Inilchek glacier 43degrees N, 79degrees E) provide information on recent (1992-98) climatic and environmental conditions in the central Tien Shan region of central Asia. The combined 14.4 m snow-pit/firn-core profile lies within the firn zone, arid contains only one observed melt feature (10 m temperature = - 12 degreesC), Although some post-depositional attenuation of the sub-seasonal delta(18)O record is possible, annual cycles are apparent throughout the isotope profile. We therefore use the preserved delta(18)O record to establish a depth/age scale for the core. Mean delta(18)O values for the entire core and for summer periods are consistent with delta(18)O/temperature observations, and suggest the delta(18)O record provides a means to reconstruct past changes in summer surface temperature at the site. Major-ion (Na(+), K(+), Mg(2+), Ca(2+), NH(4)(+), Cl(-), NO(3)(-), SO(4)(2-)) data from the core demonstrate the dominant influence of dust deposition on the soluble chemistry at the site, arid indicate significant interannual variability in atmospheric-dust loading during the 1900s. Anthropogenic impacts oil NH(4)(+) concentrations are observed at the site, and suggest a summer increase in atmospheric NH(4)(+) that may be related to regional agricultural (nitrogen-rich fertilizer use activities.