2 resultados para Arabian Plate
em DigitalCommons - The University of Maine Research
Resumo:
Three-dimensional numerical models are used to investigate the mechanical evolution of the southern Alaskan plate corner where the Yakutat and the Pacific plates converge on the North American plate. The evolving model plate boundary consists of Convergent, Lateral, and Subduction subboundaries with flow separation of incoming material into upward or downward trajectories forming dual, nonlinear advective thermal/mechanical anomalies that fix the position of major subaerial mountain belts. The model convergent subboundary evolves into two teleconnected orogens: Inlet and Outlet orogens form at locations that correspond with the St. Elias and the Central Alaska Range, respectively, linked to the East by the Lateral boundary. Basins form parallel to the orogens in response to the downward component of velocity associated with subduction. Strain along the Lateral subboundary varies as a function of orogen rheology and magnitude and distribution of erosion. Strain-dependent shear resistance of the plate boundary associated with the shallow subduction zone controls the position of the Inlet orogen. The linkages among these plate boundaries display maximum shear strain rates in the horizontal and vertical planes where the Lateral subboundary joins the Inlet and Outlet orogens. The location of the strain maxima shifts with time as the separation of the Inlet and Outlet orogens increases. The spatiotemporal predictions of the model are consistent with observed exhumation histories deduced from thermochronology, as well as stratigraphic studies of synorogenic deposits. In addition, the complex structural evolution of the St Elias region is broadly consistent with the predicted strain field evolution. Citation: Koons, P. O., B. P. Hooks, T. Pavlis, P. Upton, and A. D. Barker (2010), Three-dimensional mechanics of Yakutat convergence in the southern Alaskan plate corner, Tectonics, 29, TC4008, doi: 10.1029/2009TC002463.
Resumo:
Diversions from streams are often screened to prevent the loss of or injury to fish. Hydraulic criteria meant to protect fish that encounter screens have been developed, but primarily for screens that are vertical to the water flow rather than horizontal. For this reason, we measured selected hydraulic variables and released wild rainbow trout Oncorhynchus mykiss over two types of horizontal flat-plate fish screens in the field. Our goal was to assess the efficacy of these screens under a variety of conditions in the field and provide information that could be used to develop criteria for safe fish passage. We evaluated three different inverted-weir screens over a range of strewn (0.24-1.77 m(3)/s) and diversion flows (0.10-0.31 m(3)/s). Approach velocities (AVs) ranged from 3 to 8 cm/s and sweeping velocities (SVs) from 69 to 143 cm/s. We also evaluated a simple backwatered screen over stream flows of 0.23-0.79 m(3)/s and diversion flows of 0.08-0.32 m(3)/s. The mean SVs for this screen ranged from 15 to 66 cm/s and the mean AVs from 1 to 5 cm/s. The survival rates of fish held for 24 h after passage over these screens exceeded 98%. Overall, the number of fish-screen contacts was low and the injuries related to passage were infrequent and consisted primarily of minor fin injuries. Our results indicate that screens of this type have great potential as safe and effective fish screens for small diversions. Care must be taken, however, to avoid operating conditions that produce shallow or no water over the screen surface, situations of high AVs and low SVs at backwatered screens, and situations producing a localized high AV with spiraling flow.