2 resultados para ANTHROPOGENIC DISTURBANCES AND FOREST RESTORATION

em DigitalCommons - The University of Maine Research


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between similar to 6000 and 5000 years ago and since 1200-1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A. D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4 degrees +/- 1 degrees C, and sea ice extent will decrease by similar to 30%. Ice sheet models are not yet adequate enough to answer pressing questins about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth's climate and oceans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to maintain pond-breeding amphibian species richness, it is important to understand how both natural and anthropogenic disturbances affect species assemblages and individual species distributions both at the scale of individual ponds and at a larger landscape scale. The goal of this project was to investigate what characteristics of ponds and the surrounding wetland landscape were most effective in predicting pond-breeding species richness and the individual occurrence of wood frog (Rana sylvatica), bullfrog (Rana catesbeiana) and pickerel frog (Rana palustris) breeding sites in a beaver-modified landscape and how this landscape has changed over time. The wetland landscape of Acadia National Park was historically modified by the natural disturbance cycles of beaver (Castor cazadensis), and since their reintroduction to the island in 1921, beaver have played a large role in creating and maintaining palustrine wetlands. In 2000 and 2001, I studied pond-breeding amphibian assemblages at 71 palustrine wetlands in Acadia National Park, Mount Desert Island, Maine. I determined breeding presence of 7 amphibian species and quantified 15 variables describing local pond conditions and characteristics of the wetland landscape. I developed a priori models to predict sites with high amphibian species and used model selection with Akaike's Information Criterion (AIC) to identify important variables. Single species models were also developed to predict wood frog, bullfrog and pickerel frogs breeding presence. The variables for wetland connectivity by stream corridors and the presence of beaver disturbance were the most effective variables to predict sites with high amphibian richness. Wood frog breeding was best predicted by local scale variables describing temporary, fishless wetlands and the absence of active beaver disturbance. Abandoned beaver sites provided wood frog breeding habitat (70%) in a similar proportion to that found in non beaver-influenced sites (79%). In contrast, bullfrog breeding presence was limited to active beaver wetlands with fish and permanent water, and 80% of breeding sites were large (≥2ha in size). Pickerel frog breeding site selection was predicted best by the connectivity of sites in the landscape by stream corridors. Models including the presence of beaver disturbance, greater wetland perimeter and greater depth were included in the confidence set of pickerel frog models but showed considerably less support. Analysis of historic aerial photographs showed an 89% increase in the total number of ponded wetlands available in the landscape between the years of 1944 and 1997. Beaver colonization generally converted forested wetlands and riparian areas to open water and emergent wetlands. Temporal colonization of beaver wetlands favored large sites low in the watersheds and sites that were impounded later were generally smaller, higher in the watershed, and more likely to be abandoned. These results suggest that beaver have not only increased the number of available breeding sites in the landscape for pond-breeding amphibians, but the resulting mosaic of active and abandoned beaver wetlands also provides suitable breeding habitat for species with differing habitat requirements.