2 resultados para AMAZONIAN LANDSCAPE
em DigitalCommons - The University of Maine Research
Resumo:
We have determined the flux of calcium, chloride and nitrate to the McMurdo Dry Valleys region by analysing snow pits for their chemical composition and their snow accumulation using multiple records spanning up to 48 years. The fluxes demonstrate patterns related to elevation and proximity to the ocean. In general, there is a strong relationship between the nitrate flux and snow accumulation, indicating that precipitation rates may have a great influence over the nitrogen concentrations in the soils of the valleys. Aeolian dust transport plays an important role in the deposition of some elements (e.g. C(2+)) into the McMurdo Dry Valleys' soils. Because of the antiquity of some of the soil surfaces in the McMurdo Dry Valleys regions, the accumulated atmospheric flux of salts to the soils has important ecological consequences. Although precipitation may be an important mechanism of salt deposition to the McMurdo Dry Valley surfaces, it is poorly understood because of difficulties in measurement and high losses from sublimation.
Resumo:
There are different views about the amount and timing of surface uplift in the Transantarctic Mountains and the geophysical mechanisms involved. Our new interpretation of the landscape evolution and tectonic history of the Dry Valleys area of the Transantarctic Mountains is based on geomorphic mapping of an area of 10,000 km(2). The landforms are dated mainly by their association with volcanic ashes and glaciomarine deposits and this permits a reconstruction of the stages and timing of landscape evolution. Following a lowering of base level about 55 m.y. ago, there was a phase of rapid denudation associated with planation and escarpment retreat, probably under semiarid conditions. Eventually, downcutting by rivers, aided in places by glaciers, graded valleys to near present sea level. The main valleys were flooded by the sea in the Miocene during a phase of subsidence before experiencing a final stage of modest upwarping near the coast. There has been remarkably little landform change under the stable, cold, polar conditions of the last 15 m.y. It is difficult to explain the Sirius Group deposits, which occur at high elevations in the area, if they are Pliocene in age. Overall, denudation may have removed a wedge of rock with a thickness of over 4 km at the coast declining to 1 km at a point 75 km inland, which is in good agreement with the results of existing apatite fission track analyses. It is suggested that denudation reflects the differences in base level caused by high elevation at the time of extension due to underplating and the subsequent role of thermal uplift and flexural isostasy. Most crustal uplift (2-4 km) is inferred to have occurred in the early Cenozoic with 400 m of subsidence in the Miocene followed by 300 m of uplift in the Pliocene.